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The factors that account for successful scientific efforts are disputed among 
philosophers and historians of science, who rely heavily on impressionistic and 
case study methods to support their positions. Resolution of many such debates 
will require more adequate methods for sampling, analyzing, and integrating the 
historical track record. A more accurate description and understanding of scien-
tific processes and successes, and the development of decision aids for such 
higher level scientific judgments as theory appraisal, will offer practical help to 
the working scientist. 

 
The primary aim of this special issue, as we understand it, is to get 

behavioral scientists to think more about the philosophical underpinnings of 
their trade, or to think more like philosophers. We will contend, however, 
that the philosophers to whom they turn and those in related disciplines 
(sociology, history, and psychology) whose specialty is the study of science, 
should think and act more like scientists. As we will argue, greater rigor in 
the study of science can, and someday will, revolutionize the philosophy of 
science and deliver practical goods to the working scientist. 

Jones’ Amazing Dissertation 

Imagine a planet where individuals live a very long life. One of the 
members of this world, Jones, is laboring on his dissertation. Jones has 
invented some rules of thumb for acquiring knowledge, which he has 
labeled the scientific method. These guides address such matters as 
systematic observation and recording, and strategies for countering biased 
perceptions. Jones presents this material to his dissertation committee and 
they, being demanding as most committees are, find it insufficient and 
require a test of Jones’ ideas. The committee, unlike most, is able to agree 
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about something, in this case certain rules for appraising the success of 
Jones’ method. Most important in keeping score are whether the method 
advances the understanding of causal mechanisms not currently understood 
(we will assume there are reasonably well worked out procedures for such 
determinations) and whether it permits the prediction of new phenomena. 
The question is how to carry out these tests. 

The committee “suggests” a plan. Jones is to travel to the planet Earth 
and plant this so-called scientific method in the mind of some intellectual 
luminary, which he will take as his own and teach to others. These 
individuals will then apply the method to see how well it works. Success of 
the method will be compared to the cognitive achievements of other human 
enterprises that purport to acquire or represent knowledge, such as politics 
and religion. But what luminary to seek out? Jones considers a William 
Shakespeare, but Jones’ Chair questions the company this choice keeps, so 
Francis Bacon becomes the one. 

Once imparting this knowledge, or these basic guides or procedures, 
Jones departs the scene to take care of his neglected personal life and to 
await the results of his project. During the 350 years or so he is away, things 
get somewhat out of hand; and by the time he returns, thousands upon 
thousands of individuals, who are now called scientists, have applied the 
method, but often in varying ways and with varying subject matters. There 
have now been hundreds of thousands of applications of the method, and it 
has been substantially altered and elaborated upon, with technologies 
developed that extend the capabilities of the naked senses or the mind, such 
as telescopes, microscopes, accelerators, and computers. Working from this 
gigantic and diverse data base, Jones’ task is to make sense of these 
hundreds of thousands of applications, or studies, of the scientific method. 
Jones’ task is two-fold. First, he must compare the overall success of the 
method to that of alternative systems. Second, as outcomes are far from 
uniform, he must distill the relations between variations in method and 
outcome. 

The first task is easy. Even casual observation shows that the scientific 
method is generally superior to other systems in achieving its cognitive 
aims or advancing its knowledge base. Whereas the politicians and religious 
leaders seem to be arguing over the same basic matters and presenting the 
same kinds of evidence their predecessors did over 300 years ago, the 
dialogue of the scientists has advanced remarkably. And the scientists are 
now able to predict a wide variety of things, often with impressive 
precision, such as the occurrence of eclipses, the effects of various disease 
processes, and the speed of a ball on an inclined plane. In contrast, the 
political and religious leaders are no better able to predict than they were 
before. 

It is also obvious, however, that despite this overall superiority, the 
effectiveness of scientific endeavors varies tremendously. Some scientific 
fields have progressed much more rapidly than others, and some fields, or 
specialties, have failed completely. Some problems have yielded quickly 
and some not at all. Some conclusions or beliefs have been warranted and 
others seem to have been badly misplaced. Many different methods have 



 USING SCIENTIFIC METHODS 197 
 

been employed and some have succeeded better than others, but even so, in 
some cases methods that had been generally successful led to failure and 
those with a much lower ratio of successes sometimes led to stunning 
achievements. Given the mass of data, the less than complete (and not 
necessarily accurate) historical record, and variation in outcome, the second 
part of Jones’ task is daunting. 

The Study of Science 
If one views applications of the scientific method since its inception as 

simultaneously providing tests of the topic the investigator had in mind and 
tests of the scientific method itself, then one attempting to represent or 
discern this mass of data accurately—to describe and explain the success of 
science generally and specifically—faces precisely the task of our hypothe-
tical Jones. And, indeed, this is the task confronted by those who attempt to 
describe, or reconstruct, the history and success of science. How might one 
go about such a difficult task, and why might one bother to make the effort? 

Methods for Studying Science 

One option is to use subjective, impressionistic judgment to evaluate the 
data. (In this context, what we mean by data is the information available on 
scientific occurrences, as is found in textbooks, historical accounts in books 
and journals, scientists’ work records and notes, and other material of that 
sort.) Impressionistic judgment has an important place in such an enterprise. 
For example, until a better alternative is developed, subjective judgment is 
the best source for detecting possible predictive variables and for observing 
certain types of things. No one has yet invented a computer that can read 
through Darwin’s notebooks and draw conjectures about the factors that 
may have shaped Darwin’s thinking. 

Subjective, impressionistic judgment, however, has marked limitations, 
particularly in the context of hypothesis testing or justification. For 
example, observation and impression are prone to the operation of various 
biases (Arkes, 1981; Dawes, 1988; Faust, 1984, 1986; Kahneman, Slovic, & 
Tversky, 1982; Meehl, 1973; Nisbett & Ross, 1980). Dramatic occurrences 
may be given more attention, or unduly influence judgment, in comparison 
to less dramatic but informative data; preliminary hypotheses have a 
decided advantage in the hypothesis-testing process; and false associations 
are easily formed between variables. Thus, for example, when analyzing 
this giant data base, one might draw overly broad generalizations from 
dramatic discoveries, selectively seek out instances that support one’s pre-
suppositions about the historical track record, or link certain methodological 
procedures or preferences with success when, in fact, these procedures 
produce poor outcomes just as often or are inferior to other alternatives. 

Perhaps a more important problem is the limited capacity of the human 
mind to integrate complex and diverse data. The human mind is not adept at 
weighting variables optimally or deciphering complex configural relations 
among data. The huge body of research on clinical versus actuarial 
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judgment convincingly shows that even crude, non-optimized decision pro-
cedures that combine information in a linear manner consistently equal or 
exceed the accuracy of human judges (Dawes, Faust, & Meehl, 1989; 
Meehl, 1954). 

A related lesson (that should not be lost on one who studies science and 
that applies to the efforts of such an inquirer as well) is that science 
succeeds in large part to the extent it goes beyond impressionistic judgment. 
The scientific enterprise shares a subjective component with other human 
endeavors, but one point of demarcation is the use of methods that 
supplement, exceed, or transcend the unaided mind. Each time the scientist 
counts, he or she tacitly or explicitly acknowledges the limitations of 
impressionistic judgment, as he or she does when, for example, data are 
represented graphically, relations are expressed in mathematical terms, or 
instruments are substituted for the eye or ear. As Meehl (1986) has stated: 

Surely we all know that the human brain is poor at weighting and 
computing. When you check out at a supermarket, you don’t 
eyeball the heap of purchases and say to the clerk, “Well it looks to 
me as if it’s about $17.00 worth; what do you think?” The clerk 
adds it up. There are no strong arguments from the armchair or 
from empirical studies… for believing that human beings can 
assign optimal weights in equations subjectively or that they apply 
their own weights consistently. (p. 372) 

To which Dawes, Faust, and Meehl (1989) have added: 

It might be objected that this analogy, offered not probatively but 
pedagogically, presupposes an additive model that a proponent of 
configural judgment will not accept. Suppose instead that the 
supermarket pricing rule were, “Whenever both beef and fresh 
vegetables are involved, multiply the logarithm of 0.78 of the meat 
price by the square root of twice the vegetable price”; would the 
clerk and customer eyeball that any better? Worse, almost certain-
ly. When human judges perform poorly at estimating and applying 
the parameters of a simple or component mathematical function, 
they should not be expected to do better when required to weigh a 
complex composite of those variables. (p. 1672) 

A related approach is to perform case studies, that is, intensive analysis 
of episodes in the history of science or of scientists. One might examine 
how members of the scientific community responded to one or a series of 
theories or disputes, or might trace the course of one or more scientists over 
time, or over their careers. There are sound reasons to attempt such efforts 
(e.g., opportunity for in-depth study, intrinsic interest), and certainly in the 
context of discovery (Reichenbach, 1938) these efforts can be particularly 
worthwhile and lead to conjectures that ultimately gain support. However, 
this is a poor method of corroboration. In testing ideas or possibilities about 
the history of science, or the scientific method, case study works best where 
it is not needed, which is to disconfirm extreme (or absurd?) statements of 
the type that leading historians or philosophers of science most usually utter 



 USING SCIENTIFIC METHODS 199 
 

only in caricature (i.e, when misrepresented by others). For example, had 
Popper claimed that no theory has ever been successfully or correctly 
retained despite apparent falsification, then a single case study that 
convincingly showed otherwise might be decisive. However, neither Popper 
nor Lakatos nor other leading philosophers have said such things. Even if 
they had, and even were such strong programs disconfirmed, one is left with 
the relatively uninformative conclusion that the frequency of contrary 
occurrences is greater than zero, but how much more—less than 5%, more 
than 50%, more than 95%—we do not know. It also follows that if various 
historians or philosophers made absolute but conflicting claims, all but one 
of them (and possibly all of them) must be wrong. Point: In this context, 
case studies inform us about a position no one is likely to have put forth, or 
tell us that things are less than absolute, a proposition that rarely is in doubt 
and disproof of which reduces the remaining level of uncertainty 
microscopically. That such “hypothesis testing” is seen as informative 
speaks to the lack of background knowledge. 

The existence of exceptions to virtually any methodological dictate or 
advice one might offer reflects a basic characteristic of scientific 
processes—they are stochastic (probabilistic). Successful scientists can vary 
tremendously in what they have done, successful and unsuccessful scientists 
may pursue the same methods, and the same scientist may succeed one time 
but not another. This world is stochastic not only in the linkages between 
scientific methods or strategies and outcome, but also in the connections 
between facts and theories, for the same set of facts can be covered with 
comparable plausibility by alternate theories. In a heterogeneous and 
probabilistic world, one attempting to test impressions about scientific 
processes must be deeply worried about representative sampling. 

The representativeness of the case study method is limited not only by 
the typically low sample size. More importantly, the cases are not selected 
randomly but rather to illustrate (prove?) historians’ or philosophers’ 
particular impressions/reconstructions of science. For example, Popper has 
not conducted random selection to test his views of falsification, but rather 
has cited episodes in the history of science to illustrate his program. 
However, the diverse data set makes such efforts likely to produce 
supportive instances, even should these features be rare or nonrepresen-
tative of the scientific enterprise as a whole. One can acknowledge the 
important contributions of impressionistic methods and case study and 
simultaneously argue that they are severely limited tools by themselves for 
deriving an accurate description of science past and present (Donovan, 
Laudan, & Laudan, 1988; Laudan et al., 1986). Where there is a massive 
heterogeneous and probabilistic data base, impressionistic and case study 
methods will not do the job; more powerful analytic tools are required, such 
as representative sampling and decision aids for organizing and representing 
the available data. This need for more refined methods of study has been 
almost completely disregarded among those involved in the study of 
science, including philosophers, historians, sociologists, and even psycholo-
gists, who should know they are not exempt from the very factors and limits 
they themselves have identified as necessitating scientific method. 
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Rationale for Studying Science  
One may accept the need to apply more rigorous methods to the study of 

science but still question the point of the whole enterprise, or of the attempt 
to derive an adequate description of scientific episodes and the factors 
underlying success. One response is that this is one of the great intellectual 
questions. Determining the keys to scientific success has enormous impli-
cations for epistemology, or for those interested in methods for acquiring 
knowledge. To the reader who believes that this puzzle is already solved—
that philosophers or historians or scientists clearly understand what makes 
science succeed—we would suggest that the standard textbook descriptions 
are far from adequate. If brilliant minds in philosophy and science have 
differed sharply on the underlying components of success, if scientific 
practices are diverse and probabilistically related to outcome, if no adequate 
description of the scientific enterprise or historical episodes is currently 
available, and if impressionistic judgment is inadequate for uncovering 
answers, there is little reason for smug confidence. 

Of greater appeal to the pragmatically minded, an adequate or improved 
description of science should provide guidance for the working scientist. In 
the hundreds of thousands of applications of scientific method, the scientist 
has done something and something has resulted. As noted, the relations 
between the scientist’s actions and outcome are probabilistic For example, 
Smith does A which results in X, and Jones does B which also results in X. 
Alternatively, Smith does A which results in X, and Jones does A which 
results in Y. Given the stochastic nature of this process, the scientist must 
operate in a context of uncertainty and thus is like the gambler placing bets. 
(Note that our context here is epistemological, not ontological—we are 
addressing methods for acquiring knowledge, not the nature of knowledge.) 
Decisions to accept a theory, to modify it, to modify it in one way versus 
another, or to abandon the theory entirely are choices that are rarely, if ever, 
made with absolute certainty. For both the big and little determinations, one 
is constantly asking, “Is this the best move to make?” One way to decrease 
the uncertainty of such decision making is to access that portion of the 
empirical track record that entails comparable situations and to study the 
outcome of different moves. Of course, this is often done subjectively, for 
example, “Maybe I’d better replicate first before publishing because in 
situations like this (surprising results, a temperamental piece of equipment, 
data that somehow do not seem right, or whatever), it so often happens 
that….” However, as we have argued, subjective impression is a poor way 
to determine relative frequencies or representativeness, and a more 
rigorously and accurately derived compilation is needed. Analysis of the 
track record might show, for example, all other things being equal, that the 
various moves being pondered show meaningful differences in success ratio 
(e.g., are usually versus occasionally successful; or, perhaps, are almost 
never successful). 

As with human behavior, in science past track record or payoff may 
often be the best predictor of future payoff. Certainly it is not far-fetched to 
suggest that what has succeeded more often before is more likely to succeed 
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than what has succeeded less often. To assume otherwise suggests that a 
scientist who completely ignores the past track record (e.g., the benefits that 
control groups commonly provide) is behaving rationally. Nothing in this 
assumes that the probabilistic relations between action and outcome cannot 
or will not change. The problem, however, is determining whether such 
changes have taken place and what this means pragmatically in the context 
of decision making. This only illustrates a point we readily acknowledge—
there will be exceptions to relations found in the historical track record 
(which of course is the same as saying the relations are probabilistic), and 
as such this record will not provide a set of unassailable rules or absolutes 
but rather guidelines or rules of thumb. 

A Scientifically Based Metatheory 

If knowing what worked before helps to determine what is likely to 
work later, then we need some systematic method for compiling the 
historical track record or integrating data on scientific episodes. We will 
suggest the general outlines of such a program, starting with working 
assumptions and ending with illustrations of research topics and methods of 
study. 

Working Assumptions 
The necessity of presenting working assumptions in condensed form 

risks an unintended tone of dogmatism. The reader who desires greater 
detail can consult various sources (Faust, 1984, in preparation; Meehl, 
1990a, 1990b, 1990c, 1992a, [2002, 2004]). 

1. Science is the best available method for acquiring knowledge. 
  (Jones has already established this point). 

2. Best available and optimal should not be conflated. 
Knowing that science is the best game going and has produced 

remarkable achievements establishes little about its approximation to the 
optimal. A sprinter may leave other runners in the dust, but from this we 
would not conclude that she is nearly as fast as a jet plane, can levitate 
across water so that boats are not needed, or that there is no reason to 
pursue new means of transportation. One might consider the evolution of 
the scientific method, especially the development of various decision aids 
and measuring instruments that extend the power of human senses or 
cerebration. However, scientific method provides little aid where it is 
perhaps most needed: in the integration of data. 

Scientific method and the efforts of the scientific community help to 
counter certain frailties of the human mind, such as the tendency to over-
attend to positive instances to the neglect of negative ones. Overattending to 
positive instances leads to false belief in associations among variables or an 
overestimation of associative strength, a failing that can be corrected 
through such basic procedures as calculating a correlation coefficient or 
constructing a co-variation table. 
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Thus, if the clinical psychologist has come to believe that accented eyes 
in human figure drawings are associated with paranoid tendencies, a simple 
tally may show that the two sometimes do co-occur, but no more frequently 
with the condition of interest than with other conditions. In contrast, the 
scientific method provides virtually no guidance for integrating results 
across multiple experiments or studies to test scientific theories. In fact, 
until recently, there were few systematic approaches for combining data 
across studies in order to address far more rudimentary questions than the 
viability of a theory (e.g., such questions as the effect of an intervention in 
psychotherapy). Meta-analysis has provided an important tool for testing 
such basic questions, and it does offer one means for assisting the human 
mind in integrating data, but it is not a tool for theory evaluation of the sort 
we are advocating (see below). 

3. The scientific game is a stochastic or probabilistic one. 
Chance and uncertainty are inherent parts of the scientific process. A 

scientist may violate virtually every norm and succeed, and another may 
make all the right moves and fail. The same procedures may lead to 
different outcomes, and different procedures may lead to the same outcome. 
This is not to argue that any move the scientist makes is a blind guess or a 
throw of the dice and hence anything goes. For example, it would be absurd 
to maintain that adding numbers incorrectly is every bit as good as getting 
them right. In fact, we are arguing almost the opposite, that the likelihood of 
success varies depending on the moves that are made, and that some moves 
are more likely, or much more likely, to produce success than others. 
Nevertheless, to a varying extent, the relationships remain uncertain. 

A central aim is to minimize or decrease the uncertainty of decision 
making, or to reduce the element of chance. For now, however, and perhaps 
forever, there will be a lack of certitude in scientific decision making. 
Investigation of the historical track record will not allow us to develop 
absolute rules of procedure but rather generalizations or principles that offer 
informed guidance. 

4. The human mind is a limited instrument for integrating data. 
Both authors share the seemingly paradoxical view that the psychology 

of science will make its most positive contribution by detailing human 
cognitive limits, thereby signaling and outlining needed forms of decision 
aids or corrective mechanisms that eventually will be incorporated into 
scientific method. There is a massive body of data demonstrating the limits 
of human integrative abilities. For example, the 100-plus studies on clinical 
versus actuarial judgment show that for purposes of data combination, the 
accuracy of simple methods, such as those that depend on little more than 
counting, almost always equal or exceed that of subjective or unaided 
human judgment (see Dawes, Faust, & Meehl, 1989; Meehl, 1954). Other 
research demonstrates individuals’ difficulties combining increasing 
amounts of information, deciphering interactions or interrelations between 
multiple cues or variables, and analyzing complex or configural relations 
(see Faust, 1984, 1989). The subjective belief that one can perform complex 
data analysis cannot substitute for demonstration of such, and those who 
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readily argue that human introspection can be misleading must realize that 
they themselves are not exempt form this limitation. 

5. Description can inform prescription. 
Although it may be considered a philosophical sin to go from “is” to 

“ought,” or from description to prescription, the boundary between the two 
in the history/philosophy of science covers only certain subdomains. What 
has succeeded and what is succeeding is predictive of what will succeed, 
and thus description has prescriptive implications. Were the past entirely 
nonpredictive of what one ought to do, it would follow that one could junk 
the scientific method altogether as a preferred procedure and consider all 
possible competitors (that do not abuse logic or rationality) equally viable. 
We do not, however, endorse a strong descriptive program. Specifically, we 
do not maintain that whatever scientists have done is normative (i.e., should 
be done), or that whatever has led to success should serve as a guideline. 
We certainly do not believe that all scientists have always functioned 
optimally and that all procedures all scientists have used are equally good or 
have the same prior odds of success. 

6. Small increments can produce big payoffs. 
Certain scientific efforts have little chance of success. For example, a 

scientist’s effort to find a vaccine for a particular disease may be very un-
likely to succeed. (We are not ignoring the point that a failed attempt may 
eliminate a faulty idea or that a community of researchers who pursue a res-
earch program may be likely to succeed eventually. We are simply pointing 
out that certain scientific efforts stand little chance of reaching a correct 
solution and that correct solutions may be slow in coming and require much 
effort.) Given the low probability of success for certain types of scientific 
efforts, small increments in the probability of success can make a big 
difference. For example, if the probability of success is .001, an increment 
of half a percentage point must be considered huge. It is not unreasonable to 
believe that better ways of combining information about the history of 
science can lead to guides or rules of thumb that enhance the probability of 
success in one or another type of scientific effort by at least a fraction of a 
percentage point, and that sometimes even small increments can amount to 
large differences. Thus, although, we anticipate fairly large absolute gains 
in some areas, one can hold more modest expectations and still believe that 
the type of science of science advocated here is worthwhile. 

7. Metatheory may be difficult but it is usually not impossible. 
Certain problems or research strategies one might pursue in the 

scientific study of science are not difficult either conceptually or methodo-
logically, such as the proposal for actuarial grant evaluation we will outline 
below. Other problems, such as determining the manner in which science is 
growth-like, are clearly challenging but still may well be feasible. 

Example: It follows from our arguments that one often needs an 
extensive and well organized data base on scientific episodes in order to test 
various hypotheses. One would like to have, for example, a data base that 
covers major episodes or events in the history of science over the course of 
decades or centuries. Additionally, one would like a sample that includes 
successful and unsuccessful scientific programs. One would like a directory 
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of the players, which would include reliable descriptions of their stances on 
theories and related matters. Is the development of such a data base a diffi-
cult undertaking? An impossible one? Well, it is neither. It already exists! 
Frank Sulloway has compiled a data base that includes reliable ratings (as 
rendered by multiple expert historians) of all the major players and all the 
major episodes of scientific revolution over the last three centuries (the 
details can be found in Sulloway, 1990). Although Sulloway is clearly an 
exceptional person who has made an exceptional effort, his work shows that 
it is possible to accumulate the type of data base needed for certain of the 
forms of metatheoretical analysis we advocate. 

As science is not only the best game in town, but also one of the biggest 
and most important, and as substantial resources are often expended on 
program evaluation, it is not outlandish to suggest that considerable effort 
and resources should be directed toward the development of new methods 
for evaluating science. From either a theoretical or practical viewpoint, the 
considerable effort needed to pursue the evaluation of science is hardly a 
fatal objection. One might contemplate the expense of poor or incomplete 
knowledge, and thus whether certain evaluative programs are likely to be 
worth the cost. For example, suppose the proposal that follows for actuarial 
grant evaluation, which could probably be developed and implemented at 
modest or low cost, could save 5% of currently wasted funds. Considering 
what is spent annually for scientific research, this would offset by many-
fold the cost of development. 

Some Illustrations 

Representative Sampling of Scientific Events or Episodes 
Many claims about scientific processes are inherently statistical (Meehl, 

1984). For example, one or another method, approach, or strategy is said to 
characterize episodes of typical, successful, or preferred science. Laudan et 
al. (1986) list contrasting assumptions about scientific change that leading 
historians and philosophers have put forth. A remarkable number of these 
assumptions contain frequency claims. In the extreme case, of the 15 
assumptions of hypotheses listed under a category for successor theories, 
every one of them contains either the words “seldom,” “rarely,” or 
“always.” If one is hypothesizing a certain level of occurrence, one 
generally must obtain a representative sample to determine whether the 
claim is accurate (the exceptions obviously including such conjectures as 
never or always). 

What should be sampled depends on the question asked, if one is formu-
lating hypotheses about the growth-like nature of scientific theories, one 
will not care whether scientist Smith was the first or last born in the family, 
whether the royalty offered incentives for fixing the calendar, or whether 
Smith’s relation with Doe helped to procure the grant. Determining the unit 
of measurement, establishing the parameters of the population, obtaining 
quasi-objective markers, and developing practical sampling methods are not 
trivial undertakings, but this does not lessen the need for representative 
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sampling. If one wants to know how often something occurs across one or 
another domain of science, one must sample across that domain in a repre-
sentative manner. There seems to be no way around this problem, and what-
ever the technical difficulties involved, they apply equally to those who 
obtain episodes haphazardly or who garner the data impressionistically. The 
philosopher who selects episodes to demonstrate or illustrate a point has not 
surmounted sampling problems and associated technicalities that impede 
one who wants to sample properly; he has ignored them. 

Suppose one is interested in episodes in which most scientists converted 
to a new theory or set of ideas. Various assumptions have been made about 
such conversions. For example, there has been much debate over who 
converts, or who first converts. Is it predominantly the younger scientists? 
Those who have been less centrally involved in the development of the old 
theory? Those with extra-scientific beliefs in keeping with the newly 
proposed world order? There is also much debate over whether conversion 
to a new theory is slow or rapid, the extent to which critical experiments 
contribute to change, and whether selection is based primarily on track 
record versus potential. Argument and debate, founded on impression, have 
done little to settle these disputes, which are inherently statistical. Represen-
tative sampling would probably go a long way towards resolving such 
disagreements (Donovan et al., 1988; Hull, Tessner, & Diamond, 1978; 
Simonton, 1988). 

Although there is dispute about the relative importance of track record 
versus potential in the selection of theories, there is general agreement that 
newly accepted theories may be less thoroughly tested than the theories they 
replace, an observation that raises deep and enduring questions about the 
nature of scientific progress and progression. First, to the extent that theo-
ries are selected on the basis of promise rather than performance, and to the 
extent that promise is not a perfectly discernible quality (which it obviously 
is not), there is the potential for error. The frequency of erroneous choice 
and, in particular, the mechanisms that do or could reduce its likelihood 
without overly compromising openness to new ideas are complex puzzles. 
Here we have a three-fold conjecture: (1) evaluations of promise are not as 
accurate as is typically assumed, (2) the frequency of good selection shows 
a strong negative correlation with the extent to which appraisals depend on 
promise versus track record, and (3) such judgments could be considerably 
improved through actuarial methods (see below). 

In addition, there are longstanding debates about the manner in which 
new theories are growth-like. Need new theories have excess content? Solve 
anomalies that their predecessors could not while preserving the problem-
solving capacities of their predecessors? Make predictions with greater 
precision? Increase conceptual clarity or depth of understanding? and so on. 
Again, we would contend that progress on such questions partly hinges on 
the quality of sampling. 
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Actuarial Methods for Aiding Scientific Appraisal 
The following discussion will presume basic familiarity with the issue 

of actuarial versus clinical judgment (see Meehl, 1954; Dawes et al., 1989). 
The term “clinical” does not refer here to a clinical setting or practitioner, 
but rather to a method of judgment in which decisions are made in the head. 
In the actuarial method, decisions are based strictly on observed frequencies 
or empirical relations. The great majority of higher level evaluative work in 
science is conducted clinically. For example, those attempting to predict the 
success of proposed research (e.g., grant reviewers), determine the merit of 
completed research (e.g., journal editors), or evaluate theories, do not sit 
down with actuaries and ask them to get out their calculators. Rather, they 
take the available information and integrate it in their heads. We conjecture, 
given the limits in human cognition and the complexities of such evaluative 
work, that judgments of these types would be improved if conducted actuar-
ially. We see movement towards actuarial evaluation of scientific products 
as among the early steps in the development of decision aids for higher 
level scientific judgments, as a starting point in the evolution of scientific 
method through which powerful aids for theory testing, evaluation, and 
possibly construction will emerge (see Faust, 1984). 

We will discuss actuarial prediction of research productivity and of the-
ories as two potential exemplars. In principle, it should be a simple matter 
to develop actuarial formulae for predicting the ultimate success of grant 
proposals (not whether they are funded, but whether they lead to productive 
research). For example, one could start with whatever dimensions raters 
currently use. One then examines the relations between these ratings and the 
outcome of research efforts, preserving and weighting (if necessary, which 
it may not be) the dimensions that turn out to be predictive. 

One might ask what advantage there could be in this undertaking, as it 
may seem to reproduce what the grant reviewers are doing already. How-
ever, actuarial methods do not necessarily retain all of the initial variables 
or ratings, but only those that are predictive, and, if needed, can combine 
them optimally. Distinguishing the predictive and non-predictive variables 
and weighting the predictive variables optimally are among the tasks that 
give human judges such a difficult time. In a comparable study with radiol-
ogists on the determination of disease severity, Einhorn (1972) found that 
some of the physicians’ ratings of particular dimensions were useful, but 
that their global or overall ratings were not predictive. Actuarial formulae 
based upon the radiologists’ ratings, which selectively incorporated the 
valid ratings and combined them properly, did have some predictive power. 
For grants, ratings of various dimensions are usually already available, and 
the additional effort needed to compile such ratings and develop actuarial 
formulae (once methods for evaluating outcome have been developed) is 
almost trivial. In a comparable situation, one of the authors was able to 
develop actuarial formulae for less than $1,000.00. 

As some grants are funded and some are not, one would look for instan-
ces in which the same grant was rejected at one foundation and accepted at 
another. One would thereby have access to outcome data despite highly var-
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iable decisions/evaluations, enhancing the chances of uncovering predictive 
relations. The critic who complains about fuzziness in measurement of out-
come might consider that grant evaluators (who assumedly have developed 
their skills in part by observing relations between researchers’ intended or 
specific actions and outcome) operate under the same flaws and limits. For 
example, if a certain outcome measure is useless, it will be equally useless 
to the actuarial method and the grant evaluator. Further, actuarial methods 
can be used to predict both objective and subjective measures of outcome. 
Studies could include objective and subjective outcome ratings, such as 
citation counts and independent experts’ ratings of the merit of completed 
work. It would be particularly impressive if actuarial methods were more 
accurate predictors of both objective and subjective ratings, an outcome we 
consider likely. 

We will next consider the actuarial evaluation of theories. This is a 
much more involved topic, and for further details one should see Faust 
(1984) and Meehl (1990a, 1990b, 1990c, [1992b]). We would alert the 
reader that those less well-versed in the philosophy of science may find the 
following material difficult. 

In studying scientific theories the “scientific” metatheorist will investi-
gate statistical correlations between their various properties and relations, 
both longitudinally and cross-sectionally. A rough classification of metathe-
oretical (theory-of-theorizing) predicates to be thus examined is: 
 I. Internal properties 
 A. Formal 
 1. Logical 
 2. Mathematical 
 B. Conceptual-Substantive  
 II. External predicates (relations) 
 A. Empirical performance (“track record”) 
 B. Psychosocial 

Space limitations forbid detailed expansion or defense of this outline, so 
we can only exemplify briefly. Each of these predicates would be subjected 
to a quantitative index, either “objective” or rated by judges. Examples: A 
logical property would be interknitting, to the extent there are multiple 
cross-connections among concepts by their appearing linked to other 
concepts via overlapping derivation chains (derivations of facts from postu-
lates, where theoretical terms appear in several such sequences, “overlap”). 
A mathematical property is how detailed the theory is about signs of, and 
orderings between, derivatives of functions. A conceptual-substantive 
property is the type of theoretical entity postulated (substance? event? state? 
disposition? field? structure? particle? mentalistic?). An empirical perform-
ance property is the narrowness (= Popperian “riskiness”) and accuracy (= 
observational closeness) of numerical predictions. A psychosocial property 
would be the rate of acceptance of a theory by highly prestigious scientists. 

We do not expect, and certainly ought not demand, that a rigorous a 
priori demonstration be provided for a proposed numerical index of a 
property. While some sort of metatheoretical rationale (perhaps heavily 
dosed with quasi-consensual intuition) is desirable, the long term “justifi-
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cation” for index choice is the empirical orderliness revealed, as it is in 
other sciences. Smooth time curves and high inter-index correlations will 
tell us whether we are getting somewhere or not. Of course the first, big 
question to ask about a property index is how well it anticipates the long-
term fate of theories: which ones become ensconced in textbooks and en-
cyclopedias as “firmly established” (scientists often stop calling these clear 
winners “theories,” labeling them as “facts”) and which end up as “losers” 
(e.g., phlogiston, caloric, John B. Watson’s theory of maze learning) 
mentioned in the textbooks, if at all, as historical curiosities. 

To put a little flesh on these abstract bones, we take one “factual track 
record” property: narrowness and accuracy of numerical prediction. Meehl 
(1990a, 1990b, 1990c) has devised a crude index of corroboration in which 
the observational result of an experiment testing a theory’s numerical pre-
diction is put into a formula 

Ci = (1 – I/S) (1 – D/S) 
where I = the numerical interval tolerated by a theory, D = the deviation of 
observed value from the edge of the tolerated interval, and S = the 
Spielraum (the range of possible outcomes) antecedently available atheore-
tically. Suppose a casual conjecture predicts a correlation of .75 between 
two variables, with a theoretical tolerance of ±.15. We observe r = .67. The 
Spielraum is .00 < r < 1.00, if our background knowledge leads us to 
assume it will at least be positive. Then the corroboration index is Ci = (1 –
.15⁄1.00) (1 – .08⁄1.00) = .78. (Note that this has nothing to do with significance 
testing!) “Best” and “worst” case scenarios are used to standardize the crude 
index Ci, and the theory’s mean value over experiments is taken as an index 
of its risky-accuracy track record. 

The scientific fictionist (who rejects the reality of theoretical entities) 
would presumably be satisfied with finding strong predictive relations 
among these indexes since, for him, the theory is merely instrumental, a 
means to an end. “The purpose of theories is to predict and control facts,” as 
the Psychology 1 cliché puts it. The scientific realist, on the other hand, is 
mainly interested in the truth of theories; the means–end relation is 
reversed, and the prediction and control of facts becomes the epistemic path 
to assessing the truth of theories. Since our position is realist rather than 
fictionist, we cannot avoid saying something more about this question. 

Theories rarely being literally true (almost never, in social science), the 
leading concept of the realist is verisimilitude (Latin: “truth-likeness”). 
Some theories are nearer to the truth than others. Unfortunately the 
logicians have not as yet provided a rigorous explication of this concept that 
commands general assent, and some have doubts it can be done. Attempts 
to define verisimilitude through the relation between truth and falsity con-
tent (e.g., Niiniluoto, 1984,1987; Popper, 1962) have encountered various 
problems, and there seems to be general agreement that such approaches 
will not work (cf. references in Brink & Heidema, 1987; Goldstick & 
O’Neill, 1988). We conjecture that they have gone about it in the wrong 
way. There are several different (although related) respects in which a 
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theory can err or be correct. For example, does it postulate the right kind of 
entities (particles, fluids, neurons, whatever)? If so, does it correctly state 
their causal or compositional relations (i.e., what is connected to what)? If it 
correctly asserts that one theoretical variable is functionally dependent on 
another does it get the direction of influence correct? If it does, is the func-
tion linear or decelerated? We can list an ordered set of such right-or-wrong 
features, Guttman scalable (or nearly so), and such a list has been offered by 
Meehl (1990c). A given theory, its postulates being explicitly formulated (if 
the scientist hasn’t done this, then the metatheorist must), can be given a 
“verisimilitude score” by comparing it with the accepted theory of the 
textbooks, taken as a quasi-Gold Standard Criterion. 

Logicians may be troubled by the possibility of an accepted theory 
being refuted later on. But this will not distress the actuarial metatheorist, 
who knows that psychologists routinely build and validate mental tests 
relying on fallible ratings, diagnoses, and developmental changes (the 
“bootstraps effect” in Cronbach and Meehl, 1955). We can ascertain which 
theory properties are statistically predictive of verisimilitude by correlating 
the property indexes with the verisimilitude index, despite the latter being 
itself imperfect. Some aspects of verisimilitude are more “intrinsically 
important” (to the realist) than others, but here we rely on the well known 
psychometric principle that for as many as 10 variables having positive 
manifold, two random weightings will yield highly correlated compositive 
indexes. For an extended discussion of verisimilitude, see Meehl (1990c, 
[1992a, 2002, 2004]). 

Reviewers of this manuscript raised a number of the questions our pro-
posal might generate. One reviewer cited Nickles (1986) to support doubts 
about the generalization of indexes, the notion being that evaluative criteria 
and preferable strategies are highly specific to area of inquiry. Concerns 
were also expressed about the stability of indexes over time, the vagueness 
of outcome criteria, and the suitability of the softer sciences, in particular 
psychology, to our approach. Some of these problems are general and are 
not compounded by the strategies we propose. For example, vagueness in 
outcome criteria is problematic across evaluative programs; formal indexes 
do not make this problem worse and instead may lessen it. Further, our 
proposal does not require the universal applicability of indexes or long-term 
stability, although were generalization and stability generally low the poten-
tial feasibility and power of our approach would probably be decreased 
(although, again, the same would apply to other evaluative strategies and 
methodological dictates). We anticipate all degrees of generalization and the 
need to adjust particulars across domains. For example, an index that 
reflects the conformity of outcomes to predictions in relation to riskiness 
should have broad application, but the standards one might set for theories 
are likely to differ considerably across, say, physics and psychology. In 
contrast, an index of reducibility downwards or upwards is likely to gen-
eralize less broadly. Such questions and possibilities bring us back to our 
overriding point: These types of science-of-science conjectures are exactly 
what we ought to be studying through more rigorous methods, rather than 
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attempting to resolve them impressionistically and in the absence of decent 
data. 

Addendum 
Unfortunately, as it sometimes happens, Jones lost interest in his project 

and decided to pursue another line of work. It seems to us that psych-
ologists, given their methodological sophistication, are among those best 
equipped to take up the project. It is our hope that someone will. 
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