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More powerful methods for studying and integrating the historical track record of 
scientific episodes and scientific judgment, or what Faust and Meehl describe as a pro-
gram of meta-science and meta-scientific studies, can supplement and extend more com-
monly used case study methods. We describe the basic premises of meta-science, over-
view methodological considerations, and provide examples of meta-scientific studies. 
Meta-science can help to clarify or resolve long-standing questions in the history and 
philosophy of science and provide practical help to the working scientist. 
 

 
 
1. Introduction. As a graduate student in psychology about 25 years ago, 
one of the authors (DF) was sent by his major professor to the head of  
the philosophy department to discuss certain technical issues. At that time, 
this author presented the basic features of a still somewhat tentative pro-
posal for meta-science, which the other author (PEM) has co-developed  
and now refers to as the “Faust-Meehl Thesis.” As we will describe, the 
Faust-Meehl Thesis involves a theoretical rationale for, and the design of, 
more rigorous methods for studying scientific episodes in order to assist  
in the understanding and integration of the massive historical track record. 
The program has both descriptive and prescriptive aims. Upon hearing

75 E. River Rd., Elliot Hall, Minneapolis, MN 55455. 
 
Philosophy of Science, 69 (September 2002) pp. S185-S196. 0031-8248/2002/69supp-0017$10.00 
Copyright 2002 by the Philosophy of Science Association, All rights reserved. 
 
 S185 



S186 DAVID FAUST AND PAUL E. MEEHL 

the proposal, this philosopher simply stated, “If you are correct, then my life 
work has been a waste and I am out of business.” 

It was, and remains, the conviction of both authors that this pessimistic 
pronouncement was wrong on both scores and that the meta-scientific 
approach or program that we will describe should have just the opposite 
effect, that is, that it will sharpen traditional problems and create new ones 
involving issues that are often central to historians and philosophers of 
science, leading to many productive undertakings. These problems and 
questions involve such matters as: What features of theories predict their 
long-term survival? To what extent are these features similar across dis-
ciplines and domains? Stated differently, meta-science should provide rich 
and hardy grist for the mill of historians, logicians, and philosophers of 
science. 

In the article that follows we will discuss the potential benefits of ap-
plying more rigorous methods to the analysis of the historical track record, 
present certain basic premises of our meta-science program, discuss its 
rationale and aims, and present some examples of potential applications. 
Space limitations necessitate a dense presentation that might sometimes 
seem inadequately attentive to methodological obstacles and objections; 
various sources provide more detailed descriptions of the premises, aims, 
and potential methods of meta-science, as well as our thoughts about certain 
objections and practical problems (Faust 1984; Faust and Meehl 1992; 
Meehl 1983, 1992a, 1992b, 1999). 
 
2. Methodology for the Study of Science. The major current approach to 
the study of science is the case method, which has yielded many insights and 
is seemingly irreplaceable for certain purposes. However, there are two 
fundamental reasons why this approach may not be the method of choice for 
certain types of problems or questions, at least when used predominantly or 
in isolation. 

First, the data base of scientific episodes or occurrences is massive and 
growing rapidly. Science is BIG, and it is nearly impossible for anyone 
using the case study method to master and continuously track more than a 
relatively small proportion of this data base. 

Second, relations between the methods that scientists employ and the 
outcome of their efforts are largely probabilistic, not deterministic. Much  
of the methodology that scientists use is not, strictly speaking, rule bound, 
but more so follows from rules of thumb, principles, or guides, many of 
which can lead to inconsistent or even opposing actions (e.g., start by 
simplifying versus start holistically). Good or even excellent methods do  
not guarantee success, nor do bad or poor methods always lead to failure. 
One might crudely classify methodology and outcome into a two-by-two 
table, with one dimension representing method (good versus bad) and the
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other representing outcome (good versus bad). It is evident, given the 
massive data base of scientific episodes and because the relations between 
method and outcome are inherently probabilistic or statistical, that we  
could fill all four cells of the table with many entries, even if good method 
was much more likely to lead to a positive outcome than poor method. 
Consequently, for nearly any descriptive or normative program, no matter 
how sound, the proponent can find many supportive instances (although  
one might have to search much harder and more selectively in the case of 
some of these programs than others). 

Additionally, the same scientific procedure or methodology can pro-
duce inconsistent or varying levels of success. The relationship here is the 
one to the many. Also, different procedures can lead to the same outcome, 
the relation here being the many to the one. Again, this speaks to the 
statistical nature of the relations between scientific procedures and out-
come. 

Consider also the features of theories that are deemed desirable. Among 
the lists of such features that are commonly put forth, there is much, but 
certainly not complete, overlap. There is certainly not agreement about 
which features to assign the greatest importance or weight, or which  
should countervail one or more of the other features when they are in-
consistent or different features favor competing theories. 

Take the following abbreviated list of desirable features of theories.  
The list might include parsimony, which itself can be divided into a num- 
ber of characteristics, such as simplicity of explanation or the fewest pos-
tulates per observation statement. The list might also include novelty in 
relation to numerical precision, that is, some variation of Popperian risk  
or Salmonian “damn strange coincidence.” To these we could add rigor, 
qualitative diversity or breadth, reducibility upward or downward, and 
elegance or mathematical beauty. 

No credible philosopher of science has claimed that any one of these 
features is a sure-fire guarantee of truth, or even a high level of verisimil-
itude. Nor has any credible philosopher claimed, despite a strong emphasis 
on one or two features, that any one always trumps over all the others.  
Thus, anyone who relies on any one of these features to appraise a theory’s 
status must be claiming statistical relations between the presence or stand-
ing on that feature and the success of the theory or its verisimilitude. 

The only essentially unambiguous case is the trivially simple one in 
which Theory A beats Theory B on all features. Commonly, however, the 
features themselves are inconsistent within and across theories, creating a 
potential judgmental dilemma. For example, Theory A may have excellent 
parsimony but modest rigor; or Theory A may surpass Theory B on some 
features, but for other features the opposite might hold. 

Again, given the massiveness and probabilistic nature of the historical
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track record, it is possible to identify many positive or negative instances  
for nearly any set of preferences proposed. In this context, case study 
becomes a method for refuting extreme claims of the type that almost 
nobody makes. For example, in Realism and the Aim of Science (1983), 
Popper cites multiple examples of theories that were abandoned quickly  
due to clear falsifiers. What does this refute? Has anyone claimed some-
thing like: “No scientific theory has ever been quickly abandoned because  
of what appeared to be clear falsifiers”? 

If the claim instead is that scientific episodes should conform to certain 
characteristics, or that a certain approach will often or tend to yield a  
certain outcome, then selective illustrations are not helpful and different 
methods are needed. Given the size and heterogeneity of the historical  
data base, it is possible to pile up examples for nearly any program, even  
if the description is far from typical or the normative suggestions are less 
than optimal, if not relatively poor. If there are tens of thousands of epi-
sodes from which to collect examples, then even an approach that occurs  
or works 1% of the time will lead to hundreds of conforming instances. 

Most importantly, methods for studying the historical track record  
need to incorporate some form of representative sampling of scientific 
episodes. Obtaining representativeness will generally require random sam-
pling of a sufficient number of episodes (although this number may not  
need to be nearly as large as one might suppose). If we want to know what 
and how often something occurs, representative sampling is often, far and 
away, the most powerful method. 

Many claims about science contain frequency statements or assertions 
that are fundamentally statistical. It is informative, for example, to review 
Laudan et al.’s (1986) list of contrasting assumptions about scientific 
change. Of the 15 assumptions or hypotheses listed under the category for 
successor theories, every one of them contains such terminology as “sel-
dom,” “randomly,” or “always.” 

Why not just collect and combine episodes in the history of science on 
the basis of trained, expert judgment? First, although not literally true,  
the quality of conclusions are constrained by the quality of the data upon 
which they are based. Absent representative sampling, one lacks the data 
base needed to best answer or resolve these types of inherently statistical 
questions. The typical case study method does not capitalize on the far  
more powerful methodology that is available for obtaining representative 
samples and is unlikely to produce the needed representativeness. Further,  
in some instances, the case study method is directed toward identifying or 
accruing instances that illustrate or support a position, and therefore is  
likely to produce skewed, or grossly skewed, samples. 

Second, optimal or improved integration of large and complex data 
bases is likely to be facilitated by decision aids that supplement the power
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of the unassisted human mind. As legion research shows (e.g., see Faust 
1984), the capacity of the unaided mind is greatly strained, if not far over-
burdened, when asked to optimally combine multiple variables with prob-
abilistic relations to outcomes. The unaided human mind simply does not 
perform these types of operations or computations well. As Meehl (1986, 
372) has stated: 

 
Surely we all know that the human mind is poor at weighting and 
computing. When you check out at the supermarket, you don’t eyeball 
the heap of purchases and say to the clerk, “Well it looks to me as if  
it’s about $17.00 worth; what do you think?” The clerk adds it up. 
 

Although it might be argued that the case study method will usually be 
effective in identifying major differences in rate of success, matters become 
far more difficult when one wants to know just how often an approach 
succeeds across applications; or if one method beats another by a margin  
of, say, 25%, 10%, or 5%; or if one approach works somewhat better than 
another in some situations but not in others. The problem of subjective 
discernment can become especially difficult because, among other things, 
the less successful method may have been used far more often than the  
more successful method, leading to an absolute number (versus propor- 
tion) of positive outcomes that exceeds that of the more effective ap- 
proach. Even relatively small differences in success rates can be of great 
importance to working scientists, especially when these probabilities are 
joined across scientific undertakings. For example, when the probabilities 
are multiplicative, five attempts with a 5% versus a 2% rate of success has  
a many-fold greater chance of achieving a positive outcome. 

The problem of integrating episodes in the history of science and de-
termining probabilistic associations between procedure or theory features 
and long-term outcome is worse than this, however, because one may well 
have to assign weights to the variables and also examine inter-relations or 
configural patterns among the variables. For example, although success  
with novel prediction may generally be a more powerful indicator of a 
theory’s fate than parsimony, this may not hold true when the range of 
phenomena for which accurate prediction is achieved is very narrow and  
the alternative theory shows not only greater parsimony but also much 
greater breadth; alternatively, the relative weight that should be assigned  
to one or another variable may depend on the standing of other variables, 
that is, it may depend on patterns or configural relationships. To give what 
might be an overly simplified example for purposes of clarity, parsimony 
might count for nothing if novel prediction is nil, might count more if a 
theory also shows good rigor, and perhaps should be weighted heavily if  
the theory shows good standing on breadth. A quote from Dawes, Faust,  
and Meehl (1989), in follow up to Meehl’s statement quoted above, illus-
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trates the difficulties encountered when attempting to perform these types  
of mental operations subjectively: 

 
It might be objected that this analogy, offered not probatively but 
pedagogically, presupposes an additive model that a proponent of 
[subjectively accomplished] configural judgment will not accept. Sup-
pose instead that the supermarket pricing rule were, “Whenever both 
beef and fresh vegetables are involved, multiply the logarithm of 0.78  
of the meat price by the square root of twice the vegetable price;”  
would the clerk and customer eyeball that any better? Worse, almost 
certainly. When human judges perform poorly at estimating and ap-
plying the parameters of a simple or component mathematical func- 
tion, they should not be expected to do better when required to weight  
a complex composite of these variables. (1672) 
 

We, of course, do not mean to compare the evaluation of theories to 
supermarket pricing. Our example is intended to illustrate the difficulties 
encountered when one attempts to subjectively integrate multiple variables 
with probabilistic relations to outcome, variables which may act differ- 
ently when combined and weighted in different ways or in different con-
figurations. Thus, in addition to representative sampling, methodology 
designed to assist in the analysis and integration of such data bases (e.g., 
statistical methods such as multiple regression) can greatly bolster our 
judgmental accuracy and understanding. 
 
3. Description and Prescription. More powerful methods for studying and 
integrating the historical track record can help clarify or resolve long-
standing questions in the history and philosophy of science and provide 
practical help to the working scientist. Perhaps the most fundamental rea-
son why better description helps the practicing scientist is that what was  
or is most successful in the past has value for predicting what will succeed 
in the future. If the past were entirely non-predictive on these matters, we 
could junk the scientific method completely. Imagine if we believed that a 
statement like the following were justified, “Just because control groups 
have helped us in thousands of past experiments, and just because this 
situation closely resembles the types of problems for which control groups 
have worked before, there is no basis to assume that a control group will 
help in this instance.” Or, more broadly, “The past usefulness of control 
groups for decades and across thousands of studies and broad domains  
does not allow us to predict that control groups will assist us in future 
studies.” Scientists, of course, consider the past track record of methods 
and approaches all of the time when planning or conducting new work. 
However, greater precision and accuracy, especially around matters that 
require complex data integration (e.g., which factors in which combination
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best predict the long-term fate of theories) should provide improved guid-
ance. 
 
4. Two Illustrations. A variety of problems might capture the attention of 
the meta-scientist, especially problems in the history and philosophy of 
science that require the integration of complex data. For example, repre-
sentative sampling and statistical analysis might be applied to the study  
of scientific change, or to the association between scientist’s methodology-
ical preferences and the success of their efforts. Given space limitations,  
we will limit ourselves to a discussion of two possible areas of study. 
 

4.1. Grant Evaluation. Grant evaluation involves prediction under con-
ditions of uncertainty, that is, reviewers attempt to predict the outcome  
or utility of proposed, but yet to be conducted, research studies or pro- 
grams. Presently, grant evaluation is almost always conducted through  
some form of data integration that rests substantially or mainly on sub-
jective judgment. This is the case even should these evaluations involve 
assigning ratings to various dimensions and then adding up scores on these 
dimensions or using another means for formulating some type of global 
ratings, because the selection of the dimensions and the scheme for com-
bining the dimensions are, themselves, subjectively derived. How would  
the meta-scientist proceed in this domain? 

One might initially identify a range of variables that seem relevant in 
judging the quality of grant proposals or in predicting their success. It  
would be sensible to start this process by eliciting the beliefs and impres-
sions of qualified scientists, particularly those considered expert in grant 
evaluation. We would begin by generating a list of evaluative features that, 
if anything, is overly inclusive. Mistakenly including variables on the can-
didate list should not be too serious an error, because proper analysis will 
help us identify those that do not work or are unnecessary (i.e., that are  
non-predictors, weak predictors, or redundant predictors). In contrast, the 
failure to include potential predictors may represent missed opportunities. 

The various grant proposals are rated along these dimensions, taking 
steps to ensure that the ratings are reliable or consistent across evaluators. 
Classical psychometrics provides formulas for such questions as how  
many judges must be pooled to achieve a desired level of reliability, the 
constraints that level of reliability sets on validity, and the like. We then 
examine, through the proper mathematical procedures (e.g., multiple re-
gression), the relations between standing on these background variables  
and outcome, that is, the fate of the executed research project. At this  
stage, we will probably prefer to work with archival data. With archival  
data, we need not await outcome, can examine a long enough time period 
after completion of the research to make more accurate and trustworthy
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judgments of success, and can avoid cases with more ambiguous outcomes, 
or for which success is particularly difficult to rate. 

The mathematical analyses will tell us which variables are and are not 
associated with outcome, how strongly they are associated, and what vari-
ables in what combination or weighting scheme maximize predictive ac-
curacy. For example, it may turn out that a researcher’s past success is a  
far more powerful predictor than institutional affiliation or the thorough- 
ness of the literature review. We might find that a substantial number of 
variables all contribute independently to prediction (an outcome that, for 
technical reasons we cannot enter into here, we consider unlikely); that 
many of the variables are redundant and that only a relatively small subset 
are needed to maximize prediction; and that some variables generally be-
lieved to be good predictors are not and that other variables often consid-
ered to be of secondary importance are among the best predictors. It might 
be that the useful variables can simply be added up and weighted similarly  
to maximize predictive accuracy, that differential weighting is needed, or 
that combinations, or complex combinations of these variables must be 
utilized. Of course, we do not know what we might find—we may just end 
up “confirming” what was assumed all along—but this is the point of  
doing such studies. Of interest, a large body of research shows the feasi-
bility of conducting these types of analyses of human or expert judgment, 
although this work has not yet been applied to the study of higher level 
scientific judgments. Further, this research on judgmental processes often 
reveals substantive discrepancies between subjective appraisal, weighting, 
and integration of variables in comparison to what statistical and math-
ematical analyses show is optimal (Faust 1984; Meehl 1954; Grove and 
Meehl 1996). 

Further analyses could be conducted to determine whether the origi-
nally derived predictors or predictive formulae are stable and generalize  
to new cases within the same domains, and the extent to which they can  
be applied to other domains. For example, the variables that predict out-
come in a novel area of psychology may well differ, or differ markedly, 
from predictors in an advanced area of theoretical physics. 

A critic may raise various objections to this proposal. For example, 
doesn’t such an approach, which starts with dimensions identified by rat- 
ers and their ratings of these dimensions, duplicate what is already done? 
The answer is that it might, but it might not. Grant evaluation involves  
more than identifying relevant dimensions and rating them, it also involves 
integration of the ratings. Further, the dimensions selected for evaluation 
may or may not be predictive. Formal approaches can help to determine 
whether the variables that subjective appraisal leads us to value are good 
predictors, whether other predictors that are considered weaker or inferior 
might have greater value than believed, the extent to which predictors are
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redundant and therefore add little or nothing to predictive accuracy, and  
how to best combine these variables. The end product may match, or  
greatly differ from, what we believe or what we are doing subjectively. 
Many related studies of expert judgment show that these statistical or 
mathematical methods almost never lead to inferior overall prediction in 
comparison to subjective data integration and, instead, often bolster pre-
dictive accuracy, sometimes substantially (Dawes, Faust, and Meehl 1989; 
Grove and Meehl 1996). 

A telling example is provided by Einhorn’s (1972) study. Einhorn had 
radiologists rate biopsy slides along a series of dimensions that they be-
lieved were indicators of disease severity. The radiologists also provided  
a global rating of disease severity. In the case of the medical condition  
under consideration, severity should be related to survival time. Sadly, 
outcome data were ultimately available because the patients had terminal 
illness. The radiologists’ global ratings of disease severity showed no re-
lation with survival time post-biopsy. Ironically, however, statistical anal-
ysis indicated that some of the variables that they rated, although not all, 
were associated with survival time. Further, a statistical combination of  
this subset of valid predictors did achieve modest accuracy. Einhorn’s study 
showed that the pathologists were able to generate useful data, but  
that they themselves did not make proper use of these data. The failure  
of their global ratings to predict outcome and the contrast with statistical 
methods suggest that the radiologists had difficulty discerning which of  
their own ratings, or the dimensions that they rated, were predictive, as  
well as determining how to best combine the information. Einhorn’s sem-
inal findings have gained considerable support across a range of decision 
domains (see Connolly, Arkes, and Hammond 2000; Faust 1984). 

It is certainly possible that grant evaluators have similar difficulty dis-
tinguishing the predictive from the non-predictive dimensions and com-
bining the information optimally. Research of this type also permits study  
of new or novel predictors that might not normally be used. Additionally,  
as knowledge expands, new variables or combinations of variables can be 
uncovered that are otherwise difficult to conceive of or anticipate and that 
are problematic to evaluate subjectively. For example, an index of a re-
searcher’s past success might be incorporated into an overall predictive 
formula and might include cumulative ratings of such variables as consis-
tency of work quality, citation patterns, and upward or downward trends 
over time. 

Another objection might be that such research is seemingly limited to  
grant proposals that are funded, which reduces variation in ratings and 
perhaps outcome, both of which can hinder the effort to uncover predict- 
tive variables. For example, if we are more or less limited to grants that  
have been assigned fairly uniform, positive ratings, how can we determine
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how variation in rating (of which there is little) is related to outcome? 
Further, if grant evaluators generally do make good judgments and give 
lower rating to proposals that usually would fail, study of the proposals  
that are funded might not reveal these proper judgmental practices. How-
ever, if we do not limit analysis to a single agency we can likely overcome 
this problem: many grants that are rejected by one agency are accepted, 
unchanged, by another agency. We are not suggesting that research on  
this and other meta-scientific topics is always or necessarily easy, only that  
it is often feasible. Given the size and importance of science in current 
society, time and resources dedicated to studies that can improve the ef-
fectiveness of scientific endeavors is likely to be a wise investment 

Concerns might also be raised about methods used to rate the outcome 
of the funded research. One approach is to obtain both objective and 
subjective ratings of outcome. Objective ratings, for example, could in- 
clude citation counts. Subjective ratings might include the evaluations of 
experts. Superiority, and especially clear superiority, across both objective 
and subjective ratings would create a potentially strong basis for declaring  
a winner (i.e., the original ratings of the grant evaluators versus the sta-
tistical predictions). To the extent that the appraisal of outcome is fuzzy,  
this is not necessarily an argument for or against meta-scientific methods  
in comparison to current methods of grant evaluation. That fuzziness  
equally confronts those using present methods, and hence is a very ques-
tionable basis to argue for current methods over meta-scientific methods. 
 

4.2. Evaluation of Theories. The aim here is to develop predictors of the 
success of theories or their long-term fate. One might again start with a  
list of properties or indices and then, via study of the historical track  
record, analyze relations between standing on these variables and theory 
success. For example, an index might be designed to evaluate, roughly 
speaking, Popperian risk, or predictive accuracy in relation to risk (for 
further details on this and other possible indices, particularly in regard  
to methodological issues and potential objections, see Meehl 1997, espe-
cially 415–417). The index might include, first, range of possible (or plau-
sible) outcomes. To illustrate, the typical experiment in psychology has  
two or a few possible outcomes (e.g., Variable A will or will not be related 
to Variable B), whereas earlier studies in chemistry which involved pre-
dicting the number of molecules in a mole had an enormous range of 
possible outcomes. The index would also include the match or discrepancy 
between predicted and obtained outcome, that is, the closeness of fit. For 
example, an outcome that is relatively close provides much stronger sup- 
port for a theory with a very large versus a much smaller range of possible 
outcomes. Thus, one examines the discrepancy between predicted and ob-
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tained outcome in relation to range of possible outcomes or risk. One  
places range of possible outcome in the denominator and discrepancy be-
tween predicted and obtained outcome in the numerator. Consequently,  
the greater the range of possible outcomes and the smaller the difference 
between the prediction and outcome, the smaller the obtained number.  
The result can be subtracted from 1 for ease of interpretation, so that the  
higher the number, or the closer it is to 1, the better the outcome. The  
index can be calculated across relevant studies and a cumulative rating 
derived. Other indices might rate such dimensions as qualitative diversity 
and parsimony. 

Working with a range of potential variables or indices of theory status, 
some traditionally described and others perhaps less traditional or not yet 
developed, one can examine their predictive power, how variables are best 
combined, and how to manage inconsistencies among predictors. For ex-
ample, using various indices in varying combinations, the performance of 
competing theories could be plotted over time. It would be of interest to 
determine whether examination of performance curves or separations be-
tween theories might allow a winner to be identified, and how the accuracy 
and timeliness of such judgments compared to that of the scientific com-
munity. For example, in some instances these meta-scientific indicators of 
theory status might identify winners or loses sooner, or much sooner, than 
other means. Again, much of this initial research would likely capitalize  
on archival data, for example, clear cases in which one theory wins out  
over another or achieves long-term success. 

A critic might object here that even should it be possible to identify 
characteristics associated with the long-term fate of theories in a particular 
domain or subdomain, any such indicators are unlikely to generalize to  
other scientific domains. For example, variables that predict the long-term 
fate of theories in a particular branch of biology might be useless for 
predictions within astronomy. We would anticipate a relatively high level  
of generalizability for some variables (e.g., predictive accuracy in relation  
to risk) and less, or considerably less generalization for other indicators;  
but, more so, we believe that such matters are difficult to anticipate, which  
is exactly why such studies are needed. Potential worries about the avail-
ability of the needed historical track record have been nearly resolved by 
Sulloway (1996) who, almost single-handedly, has demonstrated the fea-
sibility of generating the data bases required to perform meta-scientific 
studies. Also, to facilitate and simplify initial efforts, the meta-scientist 
could work in more delineated domains by studying mini-theories. Mini-
theories in restricted domains can number in the hundreds (e.g., digestion)  
or thousands (e.g., human genetic mutation). Philosophers may be mis- 
taken in focusing so heavily on the “grand theories” (e.g., Kepler, Darwin, 
Einstein). The supply of mini-theories is plentiful. 
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5. Conclusion. The capacity to think about thought was a major step for-
ward in human intellectual development. Significant advance is often sig-
naled or achieved when what has been the highest level of thought becomes 
the subject matter upon which intellectual operations occur. As data are the 
subject matter for theories, theories and other scientific products are the 
subject matter for meta-theory and meta-science, organized and directed  
by methods that, in large part, remain to be developed. However, we be-
lieve that the era of meta-science is not far off and that it will make sig-
nificant, if not revolutionary, contributions to the history and philosophy  
of science, and to the work of the practicing scientist. 
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