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P. E. Meehl and N. G. Waller (2002) described a novel approach for appraising the
verisimilitude of path analysis models. This approach uses limited information
parameter estimates when assessing model fit and a nonparametric badness-of-fit
measure that relies on path diagram combinatories. R. C. MacCallum, M. W.
Browne, and K. J. Preacher (2002); C. S. Reichardt (2002); and S. Mulaik (2002)
have provided comments on this work. In this article the authors respond to the
commentators and reemphasize the importance of subjecting causal models to
severe (risky) tests.

Meehl and Waller (2002) outlined a new approach
to strong appraisal of verisimilitude in recursive path
analysis models. Several of our methodological pre-
scriptions are seemingly controversial. For example,
we advocated the use of limited information param-
eter estimates when assessing model fit. We also es-
chewed parametric goodness-of-fit tests in favor of
nonparametric tests that are based on path diagram
combinatorics. Not surprisingly, these and other fea-
tures of our approach have generated questions and
concerns. Before addressing these concerns, we want
to thank the editor, the reviewers, and the commen-
tators for participating in a stimulating exchange that
has sharpened our thinking on the many issues that are
covered in these pages.

Comments on MacCallum, Browne, and
Preacher’s “Comments on the Meehl–Waller

(2002) Procedure for Appraisal of Path
Analysis Models”

MacCallum, Browne, and Preacher (2002) sug-
gested that three aspects of our work merit closer
examination and further development: (a) the preci-
sion of VERIPATH parameter estimates, (b) the fact
that risky tests may often be testing only a subset of
model parameters rather than the full model of inter-

est, and (c) the potential for different results to be
obtained from analysis of equivalent models due sim-
ply to differences in the comparison sets of corrupted
models. We address each of these concerns in turn.

The Precision of VERIPATH
Parameter Estimates

Fifty years before the phrase path analysis was in-
troduced into the vernacular of the social sciences,
Sewall Wright (1921) demonstrated that (recursive)
linear causal models can be represented as a system of
inhomogeneous simultaneous equations. When the
model is just identified and correctly specified, the
model parameters—that is, the path coefficients—can
be estimated through algebraic manipulation of the
equations. When the model is overidentified, how-
ever, the researcher is presented with an embarrass-
ment of riches. By choosing different subsets of equa-
tions, multiple estimates of the same parameter are
sometimes derivable. In later publications, Wright
(1960) resolved this dilemma by using multiple re-
gression to estimate (unique) path coefficients.

In our original article we showed that standardized
path coefficients could often be estimated with fewer
than the total number of available, nonredundant cor-
relations. We also noted that these parameter esti-
mates might not be unique. Several commentators
were bothered by this point. For instance, MacCallum
et al. (2002) noted that “one could obtain parameter
estimates using a different splitting of the elements of
R into R1 and R2” (p. 302). They also suggested that
when multiple solutions exist, all solutions are
“equally valid” (p. 302). Rather than debate the mean-
ing of equally valid, let us simply agree that the prop-
erties of VERIPATH parameter estimates merit fur-
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ther consideration. One property that warrants closer
scrutiny is the similarity of our estimates to so-called
full information, maximum-likelihood (ML) esti-
mates. In our original article we noted that these es-
timates are oftentimes very similar.

To examine this property more closely, we ana-
lyzed several models using VERIPATH and LISREL
8.5 (Jöreskog & Sörbom, 2001). For the sake of brev-
ity, we focus on the parameter estimates and avoid
discussing the substantive implications of these mod-
els. Accordingly, in the following paragraphs we des-
ignate all exogenous (independent) and endogenous
(dependent) variables as simply xi and yi variables,
respectively.

Earlier, we suggested that VERIPATH coefficients
are “very similar to more efficient estimates [e.g.,
least squares] . . . even though the VERIPATH esti-
mates are often calculated using 30% to 50% fewer
pieces of information (i.e., correlations)” (Meehl &
Waller, 2002, p. 394). We now provide further sup-
port for that claim.

Figure 1 displays a path model that was originally
studied by Alwin (1988). This is a fully recursive
model with three exogenous (x) and four endogenous
(y) variables. Using data from Alwin’s publication
(specifically, for the 25 to 34-year-olds), we calcu-
lated ML estimates of the parameters (reported in Fig-
ure 1) and then used the estimates to generate a
model-implied correlation matrix.

The reproduced correlations are entailed by the
path model and coefficients in Figure 1. Thus, if we
analyze the correlations with VERIPATH, the result-
ing parameter estimates should match the data gener-
ating parameters perfectly. If they do not, then our
estimation method is seriously flawed. After all, the
model–data fit is exact in this contrived example, and
thus any set of correlations in R1 that yields a proper
solution (e.g., nonimaginary numbers, predicted cor-
relations that lie between −1 and +1) should also yield
the true solution (i.e., the data generating parameters).
That was exactly what we found. ML procedures
would have yielded identical results.

Of course, the previous finding was to be expected
because it follows directly from the logic of covari-
ance algebra. Nevertheless, it was important to estab-
lish because it provides a baseline for comparing
VERIPATH and ML estimates in more realistic ex-
amples in which model–data fit is not exact. Two
sources of model–data misfit are sampling error and
model misspecification. Both sources are considered
in the following examples.

Sampling error was studied using the correlation
matrix of the previous example. That matrix was con-
sidered a population matrix. Performing a Cholesky
decomposition of the parent matrix and then applying
the resulting weights to vectors of random normal
deviates simulated sample data matrices from this
population. Correlation matrices were generated for

Figure 1. Model proposed by Alwin (1988) with maximum-likelihood parameter estimates
added. The model includes three exogenous (x) and four endogenous (y) variables.

WALLER AND MEEHL324



sample sizes of 200 to 600. Each matrix was analyzed
with VERIPATH and LISREL 8.5 using the model
displayed in Figure 1.

The findings from these analyses are instructive.
For all sample sizes—representing different degrees
of sampling error—the VERIPATH and ML pa-
rameter estimates were identical even though the
VERIPATH estimates were based on only 12 of the
21 available nonredundant correlations. One could ar-
gue that these findings are noteworthy but of limited
value to applied researchers who are unlikely to en-
counter “true” causal models at any time during their
research careers. We would agree with that conten-
tion. Although these views may sound pessimistic, we
believe that they are accurate.

We are not alone in holding a skeptical view of the
veracity of causal models (see, e.g., Browne & Cu-
deck, 1993; MacCallum & Tucker, 1991). For in-
stance, Cudeck (1991) proclaimed, “A ‘correctly
specified model’ is, always has been, and always will
be a fiction. . . . All that can be hoped is that a model
captures some reasonable approximation to the truth”
(p. 261); Steiger (2000) added that “perfect mod-
els. . . . occur with probability very close to zero in

practice” (p. 159); Jöreskog (1993) admitted that “the
use of chi-square as a central �2-statistic is based on
the assumption that the model holds exactly in the
population . . . this may be an unreasonable assump-
tion in most empirical research” (p. 309); and Mc-
Donald and Ho (2002) opined that “it has long been
recognized that all SEMs [structural equation models]
are simplified approximations to reality, not hypoth-
eses that might possibly be true” (p. 71). These and
similar comments point to the importance of investi-
gating the performance of VERIPATH in models that
are literally false—in other words, in misspecified
models.

We studied the influence of model misspecification
on VERIPATH parameter estimates using two models
from recent publications. Admittedly, both models are
based on real data where the latent structure is un-
known; thus either model could be correctly specified.
Nevertheless, for previously stated reasons, we feel
confident that both models have some, and perhaps a
large, degree of model misspecification. Both models,
displayed in Figure 2, are contemporary examples of
path analysis. Model 1 (Ho, Davidson, Van Dyke, &
Agar-Wilson, 2000) recently appeared in the Journal

Figure 2. Two (probably misspecified) models: Model 1 from Ho, Davidson, Van Dyke,
and Agar-Wilson (2000) and Model 2 from Chan, Schmitt, DeShon, Clause, and Delbridge
(1997).
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of Health Psychology, whereas Model 2 (Chan,
Schmitt, DeShon, Clause, & Delbridge, 1997) was
published in the Journal of Applied Psychology.

The two models were analyzed with VERIPATH
and LISREL 8.5 using data from the original articles.
For comparative purposes, we calculated ML, instru-
mental variables (IV), and two-stage least squares
(TS) estimates of the path coefficients. Like VER-
IPATH, the latter two methods provide limited infor-
mation estimates. All estimates are listed in Table 1.

A striking feature of Table 1 is the similarity of the
VERIPATH and ML parameter estimates. Although
the correlation matrix for Model 1 contains 45 distinct
elements, VERIPATH uses only 17 correlations
(38%) to estimate the parameters. In Model 2, 7 of 10
correlations are used during parameter estimation.
Nevertheless, for both models, the VERIPATH and
ML estimates are remarkably close: 12 of the 18 path
coefficients are identical, 1 differs by no more than
|.02|, and none differ by more than |.06|.

We have focused on the quality of VERIPATH
parameter estimates to assuage concerns that they are
somehow arbitrary. VERIPATH chooses one solution
among many, but in our experience it always chooses
a highly accurate solution (if accuracy is gauged by

closeness to full information solutions). We realize
that this line of reasoning—that is, generalizing from
past successes to probable future success—is fraught
with logical difficulties. We are able to prove that if
an endogenous variable is influenced only by exog-
enous variables, then all paths leading to the endog-
enous variable will have identical VERIPATH and
ML parameter estimates. We have not been able to
derive the sampling distributions for paths linking two
endogenous variables. Users of VERIPATH should
remember that if the precision of VERIPATH esti-
mates is ever in doubt, one can always compare them
to full information estimates (because the true model
is unknown, we cannot determine their absolute ac-
curacy).

Our preferred badness-of-fit measure, the root-
mean-square residual (RMSr), is a function of the ob-
served and expected correlations (but only those cor-
relations not involved in parameter estimation).
Obviously, if VERIPATH parameter estimates are
highly biased, then our fit index will also be biased.
MacCallum et al. (2002) noted that if multiple solu-
tion sets are possible, then multiple RMSr values are
also possible. Furthermore, they wondered why any
particular RMSr is more valid than the next. We have
already shown that VERIPATH parameter estimates
are typically very close to full information estimates.
In Figure 3 we offer additional support for the sensi-
tivity of the RMSr as a measure of model verisimili-
tude.

A useful feature of VERIPATH is its ability to
create a stacked LISREL file for all alternative models
that are generated by the delete 1–add 1 rule. This
feature makes it easy to compare VERIPATH output
with analogous information from LISREL. Figure 3
displays data from the 199 alternative models that
were generated in our reanalysis of data on custodial
fathers (Rettig, Leichtentritt, & Stanton, 1999). Each
data point represents a pairing of one RMSr value
from VERIPATH with the corresponding root-mean-
square error of the approximation (RMSEA) from
LISREL. A glance at the figure indicates that the two
indices are clearly measuring something similar. They
correlate .93, indicating that both measures provide
similar rankings of model fit. We view this as an
important finding because the two measures are
founded on highly different theoretical assumptions.
The RMSEA is based on an ML noncentral chi-square/
sampling-theory perspective, whereas VERIPATH
uses admittedly inefficient parameter estimates and
makes only weak assumptions about the joint density

Table 1
Full and Limited Information Parameter Estimates for
Path Models 1 and 2

Parameter ML VP IV TS

Model 1
a .30 .30 .36 .30
b −.36 −.31 −.36 −.36
c .39 .39 .44 .39
d −.27 −.21 −.27 −.27
e .66 .66 .67 .66
f .33 .33 .03 .04
g .41 .41 .34 .19
h .34 .34 .19 .22
i −.20 −.26 −.20 −.20
j .21 .16 .21 .21
k −.35 −.31 −.35 −.35

Model 2
a −.41 −.41 −.41 −.41
b −.08 −.09 −.08 −.08
c .29 .29 .34 .34
d .26 .26 .26 .26
e .77 .77 .77 .77
f .37 .37 .37 .37
g .10 .10 .10 .10

Note. ML � maximum likelihood; VP � VERIPATH; IV �
instrumental variables; TS � two-stage least squares.
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of the observed variables. Rather than consider the
RMSEA as a gold standard, we view this finding as
providing mutual support for the validity of both fit
measures.

Risky Tests May Often Be Testing Only a
Subset of Model Parameters

A second concern of MacCallum et al. (2002) is
that our proposed risky tests may be based on only a
subset of model parameters. For instance, the RMSr of
Example 1 (Meehl & Waller, 2002) was based solely
on equations involving coefficient b. On this point our
critics are correct. Example 1 was chosen to be as
simple as possible so that readers could follow the
mathematics of our method. This illustrative model
contains a single degree of freedom, and only five
alternative models are generated by the delete 1–add
1 rule. In very simple models with few alternatives,
the distribution of RMSr values has too few numbers
to generate a stable distribution. This is a situation
that merits caution when interpreting a combinatoric
fit index. Obviously, if the delete 1–add 1 rule gen-

erates 15 alternative models for one example and 150
alternative models for a second example, then a D*
(theoretically preferred model) ranking of 85% offers
different probative weight for the two cases. Numbers
are not self-interpreting, and thus we must always
evaluate a fit index within the context and conditions
in which it was generated.

In larger models, or models with more degrees of
freedom, the delete 1–add 1 rule typically generates
hundreds of alternative models. Moreover, as we have
seen in earlier examples, VERIPATH often uses a
small fraction of the available data to estimate the
model parameters. This leaves a sizable portion of the
data for model testing purposes. We illustrate this
point with the data in Table 2.

Table 2 lists the correlations that were used to fit
Model 1 (Ho et al., 2000) in Figure 1. Notice that 28
correlations were held in abeyance to assess the mod-
el’s verisimilitude. Although not shown in the table, it
is noteworthy that all of the parameters were used to
calculate the reproduced correlations. Moreover, most
parameters were used numerous times. For instance,
path coefficients a and c (reported in Table 1) were

Figure 3. Correlation between maximum-likelihood root-mean-square error of the approxi-
mation (ML RMSEA) and root-mean-square residual (RMSr) for 199 models generated for
data from Rettig, Leichtenritt, and Stanton (1999).
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included in 25 of the 28 equations that generated the
reproduced correlations. No parameter was used in
less than 4 equations. This type of information is eas-
ily derived from VERIPATH, and thus researchers
can determine the extent to which path coefficients are
used in the derivation of RMSr values. VERIPATH
provides a riskier test when all or most path coeffi-
cients are used to reproduce the correlations in R2.

Some readers may fear that the correlations in R2
are highly constrained by the values in R1. If that
were true, then the entire rationale of our method
would be in jeopardy. This fear can be more clearly
expressed as follows.

1. A correlation matrix R is partitioned into two
nonoverlapping sets of correlations: R1 and R2.

2. The elements in R1 are used to estimate path
coefficients. These coefficients perfectly repro-
duce the correlations in R1 because the coeffi-
cients were calculated from a just-identified se-
ries of equations.

3. The path coefficients are then used to estimate
the values in R2.

4. The correlations in R2 must be reproduced ac-
curately (although not perfectly) because the el-
ements in R1 and R2 are highly dependent, be-
ing selected from the same correlation matrix.

Fortunately, the reasoning behind this concern is
virtually never sound for the types of correlation ma-
trices that are observed in the social sciences. We can
explore this issue in greater depth by returning to
Example 1 in Meehl and Waller (2002). We also de-

scribe why analytic support for this view is difficult to
come by except in unusual situations.

Recall that Example 1 was a simple model with
only four variables. The topological structure of the
model was portrayed in Figure 1C of Meehl and
Waller (2002). We argued that ry1, x2

could be used for
model appraisal because it was not used to estimate
the model parameters. The observed and predicted
correlations for ry1, x2

were .23 and .13, respectively. In
our original discussion of this example, we did not
show that the reproduced correlation could have been
much farther from .23 without violating the essential
properties of the correlation matrix. We do so now
with the help of symbolic algebra. More specifically,
we can determine the range of possible values for
ry1, x2

by solving a quadratic equation that involves the
matrix determinant. VERIPATH automatically solves
this equation for us and shows that the correlation
matrix will have a positive determinant whenever
.109 � ry1, x2

� .989. In plain English, ry1, x2
was not

highly constrained by the elements in R1. Stated oth-
erwise, there was plenty of room for the observed and
reproduced correlation to differ.

Unfortunately, the aforementioned method does not
work when R2 contains more than a single correla-
tion. What we need under this condition is a means of
determining simultaneous bounds for all correlations
in R2 given the values in R1. Although the literature
contains some relevant work on this problem (Glass &
Collins, 1970; Hubert, 1972; Olkin, 1981), analytic
solutions are apparently only available when R1 and
R2 are proper submatrices of R (the literature consid-
ers range restrictions in submatrices of partitioned
matrices only). This will almost never be the case
with VERIPATH. Nevertheless, we can answer our

Table 2
Correlations and Discrepancies for Model 1 in Figure 1

Variable 1 2 3 4 5 6 7 8 9 10

1 — .296 .055 .136 .073 −.258 .085 −.015 .656 −.152
2 .271 — .332 .406 .344 −.420 .062 .198 .145 −.062
3 .047 r3,2 — .306 .298 −.323 .083 −.071 .068 −.015
4 .126 r4,2 .171 — .726 −.371 −.094 .105 .126 .162
5 .064 r5,2 .184 .586 — −.271 .014 −.041 .122 .217
6 −.218 −.144 r6,3 r6,4 −.176 — −.218 −.046 −.207 .200
7 .027 r7,2 .062 −.119 −.007 r7,6 — −.623 .088 −.202
8 −.035 r8,2 −.137 .025 −.109 r8,6 r8,7 — .031 .116
9 r9,1 .106 .055 .110 .109 −.146 r9,7 r9,8 — −.124

10 −.071 −.046 −.010 .169 .223 r10,6 r10,7 r10,8 r10,9 —

Note. Observed correlations are reported above the main diagonal. Model discrepancies (residuals) are reported below the main diagonal.
Boldface placeholders denote correlations used to estimate model parameters.
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question using simulation methods. A possible simu-
lation could be designed as follows: (a) Partition R
into R1 and R2; (b) replace the entries in R2 by ran-
dom numbers between −1.00 and +1.00, and call this
matrix K; (c) compute the determinant of K, and if the
determinant is greater than 0.00, then K satisfies the
conditions of a proper correlation matrix; (d) compute
an RMSr for K by using the path coefficients derived
from R1; and (e) save the RMSr and repeat. Following
this design, we simulated 1 million plausible RMSr
values for the first model in Figure 1 of the current
article. The largest RMSr was .80. Clearly, in this
example, the correlations in R2 were not highly con-
strained by those in R1.

Equivalent Models

The final issue raised by MacCallum et al. (2002)
concerns the behavior of the delete 1–add 1 rule when
faced with equivalent models. The authors defined
equivalent models as “models that are parameterized
differently but that fit any given data equally well” (p.
305). This definition is problematic because it entails
the logical impossibility of discovering a fit index that
can distinguish equivalent models. If the models are
distinguishable, they cannot be equivalent. We sus-
pect that the authors meant something different,
namely, that equivalent models are models that are
covariance equivalent (models are covariance equiva-
lent when they imply equivalent reproduced covari-
ance matrices; see Pearl, 2000, p. 145). This definition
leaves open the possibility of finding a discriminating
index that uses information in addition to the model
residuals. We are not claiming to have found such an
index. What we are claiming is that our verisimilitude
index is a potential candidate because of the manner
in which it is calculated (i.e., by considering the class
of alternative models generated by the delete 1–add 1
rule). At this point we consider the question unre-
solved and hope that future simulation studies will
shed further light on the issue. However, we may get
an inkling of what those simulations will reveal by
considering the equivalent models in MacCallum
et al.

MacCallum et al. (2002) noted that EQ1 and EQ2
(a) are equivalent (according to our interpretation of
their meaning), (b) produce identical RMSr values
(.44), and (c) have different sets of alternative models
as generated by the delete 1–add 1 rule. Parentheti-
cally, we note that the correct number of alternative
models is 17 (not 12 as reported) and the RMSr for
EQ2 is .53 (not .50).

To clarify any confusion concerning the application
of the delete 1–add 1 rule, we consider the alternative
models for EQ1 and EQ2 in some detail. Path dia-
grams for these models are portrayed in Figures 4 and
5. The RMSr for each model is displayed above the
diagrams. A comparison of these figures quickly sup-
ports the observation that the alternative models are
not pairwise equivalent. MacCallum et al. (2002)
found this observation troubling. We were neither sur-
prised nor discouraged by this result. To understand
our position requires that we further explicate the role
of the delete 1–add 1 rule in generating alternative
causal structures.

We have argued, as have many others, that it is
useful to assess a model’s performance by comparing
it to relevant alternative models. Practicing what one
preaches in this case, however, presents an obvious
difficulty. Namely, there are a vast number of alter-
native models for any path diagram (e.g., models
could include interaction terms, nonlinear relations, or
various parameter constraints). In earlier examples we
demonstrated that, even when degrees of freedom are
held constant, one could often generate hundreds of
alternative models. The delete 1–add 1 rule was de-
signed to limit this plethora of riches and to focus
consideration on a manageable set of structurally
close models. Models EQ1 and EQ2 are covariance
equivalent, but according to our definition they are
not structurally close. This statement requires further
elaboration.

Notice in Model EQ1 that y2 is an endogenous vari-
able that is influenced by multiple conjectured causes
(x1 and x2). Accordingly, the endogenous status of y2

is an important component of the model. Moreover, it
is a conjecture that should not be modified in the
alternative models; otherwise they would not be struc-
turally close. The delete 1–add 1 rule respects the
endogenous status of y2. Failing to keep this feature of
the model would have produced a class of models
with a significantly different causal structure than that
entailed by EQ1. In EQ2, on the other hand, the en-
dogenous status of y2 is more tenuous. Deleting a
single path from the model can turn y2 into an exog-
enous variable. This actually occurs four times in the
models that are displayed in Figure 5.

Before leaving this section, we wish to comment on
some additional features of Figures 4 and 5. MacCal-
lum et al. (2002) noted that their equivalent models
have RMSr values of .44. They neglected to mention
that these values indicate that neither model does an
adequate job of reproducing the observed correla-
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tions. Further evidence that the models are badly mis-
specified can be gleaned from the alternative path
diagrams. Notice that many RMSr values in these dia-
grams are also close to .44. A strength of VERIPATH
is that it generates a distribution of fit indices rather
than a single measure of global fit. Users may be
tempted to cast a line in this distribution and fish for
a well-fitting model. Do not do it! Such behavior
would be counter to the spirit of VERIPATH. We
designed VERIPATH so that researchers could
submit theoretically preferred models to risky tests.
VERIPATH is not a model exploration technique.
Lastly, we feel compelled to mention that in terms of
absolute and relative fit, our original model fares
much better than either EQ1 or EQ2. Readers should
remember that although all three models are covari-
ance equivalent, only Model C is structurally close to
the model that actually generated the data.

Comments on Reichardt’s “The Priority of
Just-Identified, Recursive Models”

Reichardt (2002) crafted a commentary that is rich
in ideas and stimulating conjectures. He surveyed our
work from a shared methodological vantage point and
he offered fresh proposals for model assessment. Al-
though we comment briefly on several features of his

alternative methods, this forum is not the appropriate
outlet for a thorough exegesis of these fascinating
ideas. Rather, in the following paragraphs we limit
our comments to those aspects of Reichardt’s remarks
that bear directly on the novel aspects of VERIPATH.

Norm- Versus Criterion-Referenced
Model Appraisal

We are concerned that Reichardt (2002) painted a
narrow portrait of our ideas. Although our article con-
tains many prescriptions for model assessment that
depart from standard practice in the path analysis lit-
erature, Reichardt emphasized only one of them: the
delete 1–add 1 rule. Other elements of our proposal
are given short shrift. For instance, Reichardt stated,
“My purpose is not to oppose Meehl and Waller’s
delete one–add one (D1-A1) method but to juxtapose
it with an alternative” (p. 307). He claimed, “Meehl
and Waller (2002) proposed an innovative method for
theory appraisal that. . . . is only norm-referenced” (p.
307); “the D1-A1 method is norm referenced, as op-
posed to criterion referenced, because it assesses the
negligibility of paths by comparing the fits of alter-
native models” (p. 309); and “the D1-A1 method is
solely norm-referenced because it appraises verisi-
militude based only on the relative performance of

Figure 4. Alternative models for EQ1.
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alternative models” (p. 310). Furthermore, while de-
scribing his own work, he suggested that researchers
may “calculate a goodness-of-fit (GOF) score, which
could be Meehl and Waller’s (2002) RMSr measure
or any other GOF measure [italics added]” (p. 309).
These and other comments indicate to us that impor-
tant aspects of our coordinated approach to model
assessment have been underappreciated.

Reichardt’s (2002) commentary leaves one with the
false impression that we emphasized norm-referenced
assessment to the exclusion of criterion-referenced as-
sessment. That impression is misleading as testified
by comments in our original article. For instance, in
our description of Example 1 we noted that “if the
RMSr was large, we would reject the model no matter
how many degrees of freedom were available” (Meehl
& Waller, 2002, p. 289). In other words, we clearly
encouraged researchers to consider the absolute mag-
nitude of RMSrD* (the RMSr of the theoretically pre-
ferred model). If RMSrD* is large—the game stops.
The model fails to account for the data and thus fails
to clear the first hurdle of our multihurdle course. If
RMSrD* is smallish, the model is competitive and ad-
vances to our norm-referenced test, which is provided
by the delete 1–add 1 rule. Recall that we used this
rule to generate a combinatorically defined verisimili-

tude index that indicates whether D* accounts for the
data better than a large class of topologically close
models.

Notice in this description that we begin model ap-
praisal with a criterion-referenced test before proceed-
ing to a norm-referenced test. In both tests the RMSr
plays a central role. Unfortunately, the logical justifi-
cation for this role also seems underappreciated in
Reichardt’s (2002) commentary. For instance, he sug-
gested that researchers could use “Meehl and Waller’s
(2002) RMSr measure or any other GOF measure” (p.
309). We would not use the RMSr in this context
because it is always zero or it is based on a single
correlation when models are designed according to
Reichardt’s proposals.

Conjectures and Refutations: The Logical
Priority of Falsification

More important, Reichardt (2002) and other critics
may have failed to appreciate how the RMSr embod-
ies a philosophical stance that favors falsification
(refutation) over verification. We are persuaded by
Popper’s thesis (1959, 1962, 1983) that efforts to fal-
sify theories by subjecting them to risky tests are the
most efficient means of gauging a theory’s mettle. We

Figure 5. Alternative models for EQ2. The asterisk model is identical to Model C, Figure
1, in Meehl and Waller (2002).
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also believe that such efforts should play a larger role
in the appraisal of causal models, and our article was
written in that spirit. From this perspective, the RMSr
can be viewed as a measure of the “theoretical con-
sistency” of a correlation matrix. Other indices could
serve this function, but any index must share a com-
mon feature with the RMSr to fit within the spirit of
our approach. Namely, the index must be based on
data that were not used to estimate the model param-
eters. The following comments should clarify this
point.

A path model entails a system of equations that
relate correlations in R to model parameters, P. If the
path model is recursive and overidentified, R can be
partitioned into nonoverlapping sets of correlations,
R1 and R2. These sets play logically distinct roles in
our method of theory corroboration. Path coefficients
are estimated from the correlations in R1. These cor-
relations are reproduced perfectly because the path
coefficients are derived from a just-identified set of
simultaneous equations. The risky test comes into
play when we use these coefficients to produce point
estimates of the correlations in R2. (We have previ-
ously shown that the correlations in R2 are not highly
constrained by the values in R1 unless they have co-
efficients of determination near 1.00, a situation that
rarely obtains in the behavioral sciences.) We judge
the accuracy of these point predictions by computing
a root-mean-square error of discrepancy using the cor-
relations—and only those correlations—that were not
used to estimate the model parameters. This process
of parameter estimation, data prediction, and model
assessment can be summarized as a logical argument
that includes a hypothesis, H; a deductively inferred
consequence, C; and one or more obtained events Ei:

H: If D* has verisimilitude and (auxiliary as-
sumption) path coefficients, P, are accurately
estimated from R1, then

C: P entails a set of point predictions for the el-
ements in R2.

E1: Prediction is deemed accurate by small
RMSrD*

or

E2: Prediction is deemed inaccurate.

Notice that if RMSrD* is large, then by the modus
tollens argument, either D* does not have verisimili-
tude or the auxiliary assumption is untenable. Choos-

ing between these alternatives is accomplished by
comparing the estimates in P with full information
parameter estimates (e.g., ML estimates). If the two
sets of estimates are close and RMSrD* is large, D* is
no longer considered a plausible approximation of the
causal structure.

Naturally, passing the above test does not imply
that D* is true. The literal falsity of D* is acknowl-
edged before the study is conducted. All we can say at
this point, and that is saying a lot, is that D* can
accurately account for data points that were not used
to estimate the model parameters. Using Mulaik’s
(2002) terminology, this aspect of our approach
achieves objectivity (see Mulaik’s example of line fit-
ting). However, we wish to say more. Specifically, we
want to know whether D* accounts for the correla-
tions in R2 better than a large class of structurally
close models. If D* truly includes the important cau-
sal paths of the system under study, then our ability to
accurately predict those correlations should decrease
whenever D* is modified, say, by deleting a model-
consistent and adding a model-inconsistent causal path.

Again, by a modus tollens argument, if D* does not
reproduce the correlations in R2 better than a large
class of theory-inconsistent models, then the eviden-
tiary weight for D* is weak. However, if D* passes
this second risky test, then it has proved its mettle for
a second time and we conclude that it has verisimili-
tude. Lest we be misunderstood, we view this assess-
ment as open to modification as we continue testing
the causal implications of our model under novel con-
ditions.

The Metric Problem: Standardized Versus
Unstandardized Variables

Before leaving this section we briefly describe why
VERIPATH uses standardized path coefficients. Rei-
chardt (2002) correctly noted that standardized coef-
ficients tend to vary across populations more than
unstandardized coefficients. Unfortunately, this ob-
servation neglects the fact that there are many un-
standardized coefficients for a given path and that,
from one point of view, the metric of a coefficient is
arbitrary. Consider his example, which, parentheti-
cally, is highly unusual because it is deterministic
with no residual variances. A group of youngsters
measure their heights prior to getting dressed. The
children put on their clothes, step into their shoes, and
measure their heights a second time. This simple
model includes three variables: (a) height before get-
ting dressed (HB), (b) shoe height (SH), and (c) height
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after getting dressed (HA). Reichardt presumed that
all variables are measured in centimeters.

To breathe life into this example, we simulated
height data for 20 fourth graders. Using a figure we
located on the Internet, we assumed that the average
fourth grader is 53 in. (134.62 cm) tall (SD � 2 in.,
or 5.08 cm). We also assumed that shoe soles have an
average height of 1 in. (2.54 cm; SD � 0.2 in., or 0.51
cm) and that taller children have slightly larger shoes
than shorter children. Thus the correlation between
HB and SH was set to .50 in our model. Using these
parameters, we simulated data for 20 fourth-grade
boys. These data are reported in Table 3. Figure 6
displays the path model for this example with alter-
native scalings for the path coefficients.

Recall that all of Reichardt’s (2002) variables de-
note a common attribute (height) that is measured on
a common scale (centimeters). This is another aspect
of the model that differentiates it from traditional path
models in the social sciences. Figure 6A portrays Rei-
chardt’s model and shows that it is deterministic be-
cause HA is an additive function of HB and SH.
When the dependent variable is a unit-weighted sum
of the independent variables, and when all variables

are measured on a common metric, the path coeffi-
cients are indeed 1.00 as noted by Reichardt.

Figure 6B portrays the same model with shoe
height reported in feet rather than centimeters. Notice
that the path from shoe height to final height is more
than 30 times its former value. What is important to
realize here is that both figures report unstandardized
path coefficients. Now suppose that we broaden the
model to include a second dependent variable called
basketball prowess (BP). Presumably, among fourth-
grade boys, height confers an advantage on the bas-
ketball court as well as the dance floor. Suppose we
are interested in the path from HB → BP. What is its
expected size? The answer is: We do not know and we
cannot know unless we are given additional informa-
tion about the metric of the basketball prowess scale.
Moreover, unless we were unusually familiar with
this scale and how it covaries with height measured in
centimeters, we would be hard-pressed to classify the
HB → BP path as being negligible or sizable. Yet we
are asked to make exactly this type of decision if we
are to implement one of Reichardt’s (2002) model

Table 3
Sample Data to Illustrate the Effects of Standardization
on Path Coefficients

Height before
dressed (cm)

Shoe
height
(cm)

Shoe
height

(ft)

Height after
dressed

(cm)

127.13 2.20 0.072 129.33
141.79 2.95 0.096 144.74
144.35 2.12 0.069 146.47
136.20 2.86 0.093 139.06
143.89 2.80 0.091 146.69
137.31 3.48 0.113 140.79
121.38 2.38 0.077 123.76
145.74 3.61 0.117 149.35
135.73 1.56 0.051 137.29
129.96 1.72 0.056 131.68
132.87 2.63 0.085 135.50
132.66 2.61 0.085 135.27
124.92 2.05 0.067 126.97
128.24 2.53 0.082 130.77
131.87 2.58 0.084 134.45
130.69 2.59 0.084 133.28
129.39 2.09 0.068 131.48
144.91 2.57 0.084 147.48
139.16 2.58 0.084 141.74
136.63 2.91 0.095 139.54

Figure 6. Three alternative scalings for path coefficients.
A: Reichardt’s (2002) model. B: The same model with shoe
height (SH) reported in feet rather than in centimeters. C:
The model with standardized coefficients. HB � height
before getting dressed; HA � height after getting dressed.
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appraisal methods. Let us be clear. We do not mean to
criticize the underlying rationale of his approach,
which we find very interesting. We merely wish to
point out that the utility of his method may be se-
verely limited by the lack of well-established metrics
for psychology variables. Continuing with this ex-
ample, Figure 6C reports standardized coefficients
and correctly shows that HB is an important determi-
nant of HA whereas the causal impact of SH is mini-
mal (this is why children with stunted growth are
given growth hormones rather than elevator shoes).
The delete 1–add 1 rule does not deem a path negli-
gible because it is smaller than an arbitrary number.
Paths are deemed negligible when they can be fixed at
zero without seriously compromising our ability to
reproduce the correlations in R2. It is easy to con-
struct models where the elimination of a small path
would seriously degrade the model’s performance.

Comments on Mulaik’s “Commentary on
Meehl and Waller’s (2002) Path Analysis

and Verisimilitude”

Mulaik (2002) emphasized the role of metaphor in
scientific reasoning. He raised known weaknesses in
several philosophical schools and concluded that
VERIPATH is based on faulty logic. More specifi-
cally, he claimed that “the quasi-deductive argument
that Meehl and Waller (2002) used to frame their
method is not a sound deduction” (p. 316). We re-
spectfully disagree. In previous sections we touched
on the logic of VERIPATH. In this section we address
the broader philosophical underpinnings of our work.

We adhere to no philosophical school, holding that
a scientist should treat philosophical writings cafeteria
style, taking what is useful in thinking about a scien-
tific problem and bypassing the rest. For example,
although we have learned lessons from the logical
positivists, the chief inspiration for developing
VERIPATH was Sir Karl Popper (1959, 1962, 1983),
who was not a member of the Vienna Circle and who
in his autobiography boasted of being the “murderer”
of logical positivism. Mulaik (2002) elaborated his
personal philosophy of science, parts of which we
agree with and parts not, and aspects of both catego-
ries are still controversial among philosophers. Ad-
equate examination of them requires more space than
is available and would be inappropriate in this forum.
Most are, we think, irrelevant to VERIPATH. Instead
we prefer to state a minimal set of philosophical as-
sumptions necessary to rationalize our VERIPATH
proposals:

1. There is an objective physical world that exists
independently of our minds.

2. Causal relations are a feature of that world.

3. Describing those relations symbolically (text,
mathematics, schematic diagrams, pictures) is a
legitimate aim of science.

4. Formulations of those relations differ in their
accuracy (verisimilitude).

5. Verisimilitude is a correlate of the formulations’
power to predict novel observational facts (to
pass severe, risky tests).

Most philosophers and, so far as we know, all prac-
ticing scientists, act in accordance with this last as-
sumption, despite the absence of a satisfactory meta-
theorem to that effect (for a proposed amelioration of
this deficit, see Meehl, 1992a, 2002, in press). The
importance of severe tests, although articulated most
vigorously in recent years by Popper (1959, 1962,
1983), was of course not his invention; it can be found
in 19th century thinkers such as Whewell (1847/
1966), Jevons (1874/1958), and Peirce (1986) and is
argued by contemporaries such as Mayo (1991, 1996)
and Salmon (1989). The relation between normative
and descriptive metatheory is a complex question cur-
rently lacking consensus. The norms of theory ap-
praisal are rules (logic, semiotic, probability calculus,
and honest protocols) and guidelines (e.g., parsimony,
numerical precision, and novelty and diversity of pre-
dictions). Metatheory is in a sense an empirical dis-
cipline, whose database consists of history of science
and current scientific practice. The normative stems
from the descriptive for one who considers science to
be, on the average and in the long run, a success. On
this view, the main factual source of prescriptions is
episodes in the history of science, the psychology and
sociology of science being of lesser importance (Faust
& Meehl, 1992, in press; Meehl, 1992a, 1992b, 2002,
in press). Our stance in developing VERIPATH is
normative. One who does not accept the first four
philosophical assumptions listed above would pre-
sumably not be interested in path analysis in the first
place; anyone who accepted the first four but rejected
the relation between verisimilitude and passing a se-
vere test would not be interested in our proposed so-
lution.

As to induction versus deduction, the theory T
should be strong enough to deduce the set of permis-
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sible diagrams, a topological consequence without the
causal weights. If T is too weak to provide even that
little, one should probably not engage in path analysis.
The inductive component is the (probabilistic, nonde-
ductive) inference from passing a risky test to theory
verisimilitude, briefly stated in the fifth metapostulate
listed above. We bypass the philosophers’ persisting
disagreements on what licenses this transition (for dis-
cussion of these points, see Mayo, 1991, 1996; or
Salmon, 1989). Rather, we assume that usual scien-
tific practice warrants reliance on it. Whether one pre-
fers inductivist terms such as confirmation (Carnap,
1936–1937, 1945, 1949; and see the discussion of
degree of confirmation in Meehl, 1954/1996, pp. 34–
36) or deductivist corroboration (Popper, 1959—
merely failure to refute modus tollens), the common
scientific feature is quite clear: If a conjecture, how-
ever arrived at, gained no rational credibility as an
approximation to objective truth (verisimilitude) by
generating (nomologically or probabilistically) risky
numerical predictions, then nearly all empirical sci-
ence would be impossible. Since the time of Galileo,
empirical scientists have proceeded in this manner
(see, e.g., Salmon, 1989), and it is good enough for us.
One hopes the philosophers will be able to rigorize a
metaproof that this is a rational policy, but science
cannot be suspended in the meantime. Meanwhile,
whether we label the scientific inference process as
inductive or deductive is unimportant semantics. The
logical empiricists realized over a half-century ago
that in the so-called deductive–nomological model of
explanation, the “deduction” from theoretical prem-
ises to observational conclusion is itself often deduc-
tion of a probability. The important thing is to be clear
about the structure of the inference and its data
source, which we think VERIPATH achieves. For ex-
ample, as Meehl and Waller (2002) stated clearly, the
transition from the correlations in R1 to the estimated
coefficients (weights) via the topological path dia-
gram is deductive computationally, as is the deduction
of the predicted correlations in R2 from the weights.
However, the procedure as a whole is inductive, start-
ing with observed correlations subject to sampling
error, with these correlations relying on probabilistic
statistical inference, and concluding with an appraisal
of T based on the probability of {DT} doing as well as
it did if the motivating T had small verisimilitude.

This should clarify where our views differ from
Mulaik’s (2002) on important foundational issues. On
some issues we agree; however on others Mulaik de-
tected agreement where none exists. For instance,

Mulaik is “pleased to say, Meehl and Waller (2002)
also showed an inclination to abandon the idea of not
only a final truth but exact truth” (p. 317). Once again,
we respectfully submit “it just is not so.” As philo-
sophical realists, we believe in both final and exact
truths (the terms are synonymous in our view). Nev-
ertheless, as we stated previously, we do not consider
path analysis models as accurate snapshots of nature.
Rather, we view them as impressionistic paintings.
The topological structure of the landscape is recog-
nizable, but the details are fuzzy. The recent review
by McDonald and Ho (2002, see Table 2) should con-
vince anyone that most path models are gross repre-
sentations of causal systems, at best.

We have never suggested that VERIPATH be used
for exploratory purposes. Thus we are baffled by Mu-
laik’s claim that “because ostensibly one would pick
the best fitting model of the compared alternative
models generated, [Meehl and Waller’s] proposal is
essentially no different from what takes place in the
parameter estimation process” (Mulaik, 2002, p. 319).
What is the logical rationale for this statement? If a
researcher wittingly divides a probability value in half
because editors prefer small probability values to
large ones, we do not point an accusatory finger at
Karl Pearson or Sir Ronald Fisher. Likewise, if some-
one uses VERIPATH for other than its intended pur-
pose: Do not blame us! VERIPATH is not an explor-
atory tool, and thus it has no “similarities to what we
do already (see the third and fourth step of the four-
step procedure of Mulaik & Millsap, 2000)” (Mulaik,
2002, p. 320).

Summary

The strictly statistical criticisms of our procedure
seem to divide into two broad classes, the first con-
sisting of valid points, suggesting refinements that
might lead to improved parameter estimates. Whether
they are right or not can be ascertained by empirical
and Monte Carlo investigation. Our data suggest that
VERIPATH estimates are frequently identical to ML
estimates. When they are not, they are typically very
close or good enough. The second class says because
we do not know how accurate some of the parameters
are, the proposed method is not useful. Yes, we
should look into such things as how inaccurate the
parameter estimates are, how they might be made
more accurate, and whether one index of badness of
fit is better than another. However, pending those in-
vestigations, we still have the final step of the argu-
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ment, that if the cumulative effect of all the error
sources (leading to and including bad or less than
optimal parameter estimates) were vitiating, then we
would not be able to pass the multiple risky tests of
our approach. Our method gets the “right answer.”
Not the “right numbers”—we know the numbers are
wrong, and the whole point of our procedure is to
bypass that incurable problem that the numbers will
(most probably) always be, strictly speaking, inaccu-
rate.
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