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Detecting Latent Clinical Taxa, II: A Simplified Procedure, 

Some Additional Hitmax Cut Locators, A Single-Indicator Method, 

and Miscellaneous Theorems 

Paul E. Meehl 

In a previous contribution to this research report series (Meehl, 1965 [PR-‐65-‐2]) I suggested a 

new method of identifying latent clinical taxa for the presumed dichotomous case, and proved a 

number of theorems arising from an idealized model of the latent situation, in which it is 

assumed that the intra-taxon covariances between pairs of fallible quantitative indicators are zero 

(or, more generally, and adequate for most of the derivations involved, that they are at least 

approximately equal as between the two latent taxa). A Monte Carlo study of one stage of the 

proposed sequential procedure, namely, that locating the hitmax cut on a single indicator by 

plotting the curve of the covariance of another pair of indicators as a function of the first 

indicator, was sufficiently encouraging with regard to accuracy and sample size required to 

justify further inquiry into the method’s value (Seth, 1965). The present brief report (1) provides 

a more direct approach, and one presumably less subject to sampling instability, than that 

proposed in the earlier report, (2) provides additional hitmax cut locators, (3) suggests an 

alternative method which, by making the assumption of approximately normality within taxa, 

permits the desired inferences to be drawn from data involving only a single indicator-variable, 

(4) presents several new theorems concerning the latent situation, and (5) offers some tentative 

suggestions about lines of further development [this	  is	  section	  4g]. 

The basic ideas and developments, as well as notation, of the previous report will be 

presupposed in what follows, so it is desirable to have ready access to that report when reading 

this one. [In	  a	  1981	  reprinting	  of	  PR-‐65-‐2,	  Meehl	  advised:	  Sections	  4-‐5-‐6	  and	  Appendix	  are	  now	  

obsolete,	  being	  replaced	  by	  the	  procedure	  in	  Meehl:	  Psychodiagnosis	  (1973)	  Chapter	  12	  “MAXCOV-‐

HITMAX”	  where	  the	  hitmax	  interval	  covariance	  test	  (described	  on	  pp.	  28-‐29	  of	  the	  original	  PR-‐65-‐2)	  is	  

elevated	  from	  the	  role	  of	  a	  consistency	  test	  to	  that	  of	  a	  main	  estimator.	  See	  also	  Meehl	  and	  Golden	  

“Taxometric	  methods”	  in	  P.C.	  Kendall	  and	  J.N.	  Butcher	  (eds.)	  Handbook	  of	  research	  methods	  in	  clinical	  

psychology	  (1982)	  and	  references	  cited	  therein.—LJY] 
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1. A more direct method of estimating the latent 

parameters 

In PR-65-2, while several alternative methods of estimating certain quantities were proposed, 

the basic procedure consisted of the following steps: 

A. Locating the hitmax cut on a given indicator by finding the interval of its distribution 

within which the covariance of another indicator-pair is maximized (Section 3 of PR-65-

2). 

B. Locating cuts on a pair of variables which equate the (latent) valid positive and valid 

negative rates, by utilizing a relationship between covariances and squares of observed 

frequencies above and below cuts and the latent positive and negative rates (Section 4). 

C. Relying on the assumption that the latent valid positive and valid negative rates have 

been successfully equated by this preceding procedure (B), the observed frequency of 

tallies in a fourfold table determined by such rate-equating cuts can then be expressed in 

terms of latent values, including the unknown latent base-rate P, in the form of a system 

of three quadratics (Section 5). 

D. Given an estimate of the latent base-rate P, we can write two equations in the unknown 

latent means for each indicator, one equation expressing the grand mean in terms of the 

latent means and base-rates, the other equation expressing the mean of cases lying in the 

hitmax interval in terms of the same pair of unknown latent means with coefficients 

[1/2, 1/2] since these latter are the frequencies of the two taxa in the hitmax interval. 

Solving this pair of equations gives us the latent means (Section 6). 

E. Possessing estimates of the latent means on one indicator enables us to estimate the latent 

frequencies within any class interval of another indicator, since the manifest mean within 

such an interval is a weighted composite of the latent means, the weights being 

proportional to the frequencies of the two taxa in the interval (Section 7).  

While these computations are not excessively onerous, and while the method includes an 

extensive list of consistency tests for corroborating the latent model (Section 9), the method to be 

proposed here is much shorter, more straightforward, relies upon estimates of fewer latent 

quantities, and has the special advantage that it dispenses with the system of three quadratics, 

which can surely be supposed to be excessively subject to random sampling fluctuations, and 
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therefore to demand a larger sample size for application of the method than will typically be 

available. 

Essentially, the straightforward method elevates one of the consistency tests, the “hitmax 

interval covariance test” (Section 9-c) from the status of a mere consistency test to a main 

method of estimating the desired latent values. 

In PR-65-2 it was shown that the (xy)-covariance of a mixed group of schizotypes and 

nonschizotypes, given the assumption of negligible intrataxon covariance, depends only upon the 

amount of “mixture,” as shown in equation (3) in PR-65-2, thus  

[1] cov(xy) = Kpq = ΔxΔy pq  = (𝑥s – 𝑥n)(  𝑦s – 𝑦n)pq 

Having used this expression for the observed (xy)-covariance in a mixed batch to show that 

the hitmax cut on an input variable, say w, can be located by finding the w-interval within which 

the (xy)-covariance is a maximum (since Equation [1] is maximized when p = q = 1/2), we infer 

that the observed value of the manifest covariance at its maximum (in the hitmax interval where 

p = q = 1/2) is 1/4 times the product of the latent mean differences. We can therefore use the 

statistics of that hitmax interval to write directly 

[2] K = ΔxΔy  = 4 cov(𝑥𝑦)!!  

and solve for the constant K. 

But since Equation [1] holds for all w-intervals, knowing the value of K provides a direct 

method for calculating the latent schizotype-nonschizotype ratio in any w-interval, not only at 

hitmax. In any w-interval, the covariance of the output indicators x and y being an observable 

statistic, we have 

 Kpiqi = cov(xy)i 

 pi 1− pi( ) = cov xy( )i
K

  

[3] pi
2 − pi +

cov xy( )i
K

= 0  

so that all we need do, after once solving for the latent constant K in the hitmax interval, is then 

to apply repeatedly the quadratic roots formula to Equation [3] within each w-interval to get the 

proportion pi of schizotypes in that interval. 
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Multiplying the pi and corresponding qi [= 1 – pi] thus obtained for each w-interval by the 

absolute (manifest) frequency Ni within each w-interval yields the latent absolute frequencies Nsi 

and Nni for the interval. 

The result of repeating this process over the whole range of w-intervals is the inferred pair of 

latent frequency-functions fs(w) and fn(w), from which the latent means 𝑥s, 𝑥n, 𝑦s, and 𝑦n can now 

be, so to speak, computed directly. And of course the sum of all of the schizotypal and 

nonschizotypal absolute frequencies over all intervals gives us the total number Ns of schizotypes 

and Nn of nonschizotypes in the finite sample, and therefore yields a direct estimate of the latent 

base-rate P and its complement Q. 

The base-rate P can also be inferred more directly from hitmax covariance and grand 

covariance (i.e., without the intermediate step of estimating each interval proportion pi), as 

explained in Section 2-c below. 

2. Some further theorems and procedures 

a. An additional hitmax cut locator, employing the derivative of the difference between an 

output variable’s sum above and below a sliding cut  

Consider the sum (not average) of values of an output variable y for patients lying above an 

arbitrary cut on an input indicator variable x, and the corresponding sum of y values below that 

arbitrary x-cut. Then we show that the rate of change of the difference between these y-sums 

with respect to the cumulative frequency Nb below the x-cut is equal to minus twice the y-mean 

in the interval surrounding the cut, when the cut is the hitmax cut. 

Proof 

[4] ya
Na

∑ = ya
Hs

∑ + ya
Mn

∑ = H sys +M nyn   

[5] yb
Nb

∑ = yb
Hn

∑ + yb
Ms

∑ = Hnyn +M sys  

Define a difference function of the cumulative frequency (up to a sliding cut on x) 

[6] G(Nb ) = ya
Na

∑ − yb
Nb

∑   

 = H sys +M nyn( )− Hnyn +M sys( )   
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Differentiating with respect to Nb 

 dG
dNb

= dH s

dNb

ys +
dM n

dNb

yn −
dHn

dNb

yn −
dM s

dNb

ys   

 = dH s

dNb

− dM s

dNb

⎛
⎝⎜

⎞
⎠⎟
ys −

dHn

dNb

+ dM n

dNb

⎛
⎝⎜

⎞
⎠⎟
yn   

 = − dM s

dNb

− dM s

dNb

⎛
⎝⎜

⎞
⎠⎟
ys −

dHn

dNb

+ dHn

dNb

⎛
⎝⎜

⎞
⎠⎟
yn   

[7]	   	  = −2 − dM s

dNb

ys +
dHn

dNb

yn
⎛
⎝⎜

⎞
⎠⎟
	  

these derivatives being everywhere positive and dG
dNb

 being everywhere negative. 

At hitmax cut (and nowhere else) we have also 

[8] dM s

dNb

= dHn

dNb

= 1
2

  

so at hitmax we have, putting [8] in [7], 

[9] dG
dNb

= −2 1
2
ys +

1
2
yn

⎛
⎝⎜

⎞
⎠⎟ = − ys + yn( )   

But we know that, for the cases lying within the hitmax interval of x, the mean y is, in latent 

terms, 

[10] yhx =
1
2
ys + yn( )  

So from [9]-[10] we infer that at the hitmax cut and within the interval containing that cut, 

[11] dG
dNb

= −2yhx   

In practice, we would plot the graph of the quantity (∑ya – ∑yb) against the abscissa Nb and 

estimate the slope of this graph at intervals, let us say graphically. We also plot 𝑦x at various Nb 

values (i.e. within various x-intervals) and there should appear a value of Nb (corresponding to a 

value of x) at which point the slope of the first graph equals twice the value of the second graph. 

(Physical intuition assures us that there will only be one such place, although I have not shown 

analytically that the derivative of the difference of sums equals –2𝑦x at only one point). 
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b. An additional hitmax cut locator, employing the difference between an output 

variable’s mean (or, if a qualitative sign, its (+)-rates) above and below a sliding cut 

If a family of indicators are correlated solely or mainly by virtue of each indicator’s being 

discriminative of the latent taxa, it seems intuitively that when the quantitative members of this 

family are treated dichotomously as clinical “signs” by locating a cut, above which the 

quantitative indicator is called “positive” and below which it is called “negative,” then a very 

poor choice of such a cut should have, in general, a tendency to reduce the statistical tendency of 

such “signs” to go together. For example, suppose a neurologist were dealing with the clinical 

taxonomy of meningitis versus non-meningitis, and the two indicator-variables under 

consideration were temperature and neck-stiffness. A moderate-to-high temperature elevation 

being associated with meningitis, and marked pain on anteroflection of the neck also being a 

clinical sign of meningitis, the combination of signs “high temperature with marked stiff neck” 

would occur together much more often than by chance in a clinical population of meningitic 

versus non-meningitic patients. But if our clinician were so unwise or unlucky as to have chosen 

a very low cutting score on these two variables, such as any temperature above 99.0° and any 

sign or complaint, however slight, of stiff neck or reluctance to flex the neck, then considerable 

numbers of patients without meningitis but with other milder infectious conditions (even 

including the common cold) would show one or both of the “signs,” and two untoward results 

would be expected. First, the manifest correlation between the two clinical indicators would be 

reduced; secondly, in terms of the latent situation, the identification of the taxon of interest, 

namely meningitis, would be poorer. This general line of thought suggests that another possible 

approach to the hitmax cut location would be some kind of maximizing of the “agreement” 

between two signs, this agreement being hopefully higher when each sign is optimally (or near-

optimally) located. Unfortunately, one’s intuitions here do not seem to be confirmed, at least by 

any definition of “concordance” or “agreement” that I have investigated, and I have tried half-a-

dozen such without success. Thus, for example, one cannot show that a concordance index 

defined as being the proportion of total cases found in the concordant cells of a fourfold table 

(i.e., the sum of cases in the first and third quadrants) is a maximum when each variable is cut 

optimally; and, in fact, it can be shown that the hitmax cuts will maximize the concordance of 

this joint-sign table only under the special condition that the latent valid positive and valid 

negative rates on each indicator are symmetrical which will rarely be the case in practice; or, at 
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least, however often it may be approximately true, we have no way of knowing whether it is true 

or not. The basic reason why intuitively likely possibilities, such as the sum of y-positives 

above and y-negatives below an x-cut, cannot be maximized to find the hitmax cut on x is 

the asymmetry between (ps – qs) and (pn – qn). It may be that I have simply not been 

ingenious enough to hit upon the right (somewhat arbitrary) index for measuring 

concordance, and the reader is invited to try his hand at it, if his general intuitions are the 

same as mine that some such hit-maximizing concordance index must exist. 

However, one intuitively plausible manifest criterion turned out to be an almost perfect 

hitmax cut locator every time it was applied to “fake data,” including situations of considerable 

base-rate asymmetry and departures from normality. Paper and pencil numerical runs suggested 

that the proposed criterion almost always located the hitmax cut correctly, and on the rare 

occasions when it did not do so, it was never found to be in error by more than one class-interval 

(unit integral increments in x). The proposed index of (xy)-concordance is the difference between 

𝑦ax (mean of y above the x-cut) and 𝑦bx (mean of y below the x-cut).2 If, instead of dealing with 

quantitative values of y we have already chosen an arbitrary y-cut on some other basis, or the y-

variable as it is presented to us clinically exists only as a qualitative “sign,” maximizing the 

difference of the y-means above and below an x-cut is algebraically equivalent to maximizing the 

difference between the proportion of y(+) cases [“sign-positive”] lying above and below the x-

cut. 

It turns out, however, that when we express this index in terms of the latent quantities, its 

maximum value is not exactly identical with the value at the hitmax cut, shown as follows: 

Define 

 yax =
yax

Nax

∑
Nax

      and      ybx =
ybx

Nbx

∑
Nbx

  

and simplify notation by dropping the x-subscripts which occur throughout. Then the proposed 

concordance-index is 

[12] yd (x) = ya − yb =
ya∑

Na

−
yb∑

Nb

  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
2	  This	  subsequently	  became	  the	  MAMBAC	  (Mean	  Above	  minus	  Mean	  Below	  A	  sliding	  Cut)	  procedure	  for	  detecting	  
taxonicity	  and	  estimating	  latent	  parameters	  (Meehl	  &	  Yonce,	  1994).—LJY	  
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which in terms of latent variables is 

 yd (x) =
H sys +M nyn

Na

− Hnyn +M sys
Nb

  

[13] = H s

Na

ys +
M n

Na

yn −
Hn

Nb

yn −
M s

Nb

ys   

The latent difference between the schizotype and nonschizotype y-means being a constant 

unaffected by our choice of x-cut, define 

[14] Δy = ys − yn  = A constant > 0 

and substitute 

 ys = yn + Δy  

in [13] to get 

 yd (x) =
H s

Na

yn + Δy( ) + M n

Na

yn −
Hn

Nb

yn −
M s

Nb

yn + Δy( )   

 = H s

Na

+ M n

Na

⎛
⎝⎜

⎞
⎠⎟
yn −

Hn

Nb

+ M s

Nb

⎛
⎝⎜

⎞
⎠⎟
yn +

H s

Na

Δy − M s

Nb

Δy   

 = Na

Na

yn −
Nb

Nb

yn +
H s

Na

Δy − M s

Nb

Δy   

 = H s

Na

Δy − 1− Hn

Nb

⎛
⎝⎜

⎞
⎠⎟
Δy   

[15] = Δy H s

Na

+ Hn

Nb

−1
⎛
⎝⎜

⎞
⎠⎟

 Δy > 0   

which is maximized by maximizing the term in parentheses, hence, by maximizing the sum of 

the proportion of hits above and the proportion of hits below the x-cut. 

Since it is not true in general that (Hs + Hn)   → Max 

 when H s

Na

+ Hn

Nb

⎛
⎝⎜

⎞
⎠⎟
	  → Max 

we cannot show that maximizing the latter will locate hitmax exactly. But we can show that it is 

a very good approximation, the error in analytic maximization being smaller than we can expect 

from sheer sampling irregularities, and usually less than a class-interval increment in x. The 

proof, while not recondite, is unfortunately somewhat tedious. 
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[Quasi]-Proof 

It will be convenient to take derivatives with respect to Nb [= cumulative frequency of 

manifest (mixed) distribution up to x-cut] rather than the usual derivative w.r.t. the abscissa-

variable x, of which Nb is an increasing monotonic function. 

We define 

[16] ha =
H s

Na

hb =
Hn

Nb

⎫

⎬

⎪
⎪⎪

⎭

⎪
⎪
⎪

 
Hit-rates above and 

below cut, respectively 
[17] 

[18] h = ha + hb  Sum of these two hit-rates 

To maximize the sum of hit-rates above and below the cut (obviously a maximum if an 

extremum, from the physical situation) we set 

 dh
dNb

= d
dNb

ha + hb( ) = 0  

[19] dha
dNb

= − dhb
dNb

 

which we want to prove is approximately true at the hitmax cut. (It is obvious that these rates of 

change have opposite sign, everywhere.) 

Left-hand side is 
 

 dha
dNb

= d
dNb

H s

Na

⎛
⎝⎜

⎞
⎠⎟
=
Na

dH s

dNb

− H s
dNa

dNb

Na
2   

[20] = 1
Na

dH s

dNb

+ H s

Na

⎛
⎝⎜

⎞
⎠⎟
= 1
Na

dH s

dNb

+ ha
⎛
⎝⎜

⎞
⎠⎟

  

Right-hand side is, neglecting minus-sign, 

 dhb
dNb

= d
dNb

Hn

Nb

⎛
⎝⎜

⎞
⎠⎟
=
Nb

dHn

dNb

−Hn
dNb

dNb

Nb
2   
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[21] = 1
Nb

dHn

dNb

− Hn

Nb

⎛
⎝⎜

⎞
⎠⎟
= 1
Nb

dHn

dNb

− hb
⎛
⎝⎜

⎞
⎠⎟

  

At hitmax, 

 dH s

dNb

= − 1
2

      and      dHn

dNb

= + 1
2

 

which values being substituted in [20] - [21] give 

[22] dha
dNb

= 1
Na

H s

Na

− 1
2

⎛
⎝⎜

⎞
⎠⎟

 

[23] dhb
dNb

= 1
Nb

1
2
− Hn

Nb

⎛
⎝⎜

⎞
⎠⎟

 

Putting these values into [19], we want to show that 

 
 

1
Na

H s

Na

− 1
2

⎛
⎝⎜

⎞
⎠⎟
! − 1

Nb

1
2
− Hn

Nb

⎛
⎝⎜

⎞
⎠⎟

 

 
 

H s

Na
2 −

Hn

Nb
2

⎛
⎝⎜

⎞
⎠⎟
− 1
2

Nb − Na

NaNb

⎛
⎝⎜

⎞
⎠⎟
! 0   

[24] 
 

ha
Na

− hb
Nb

⎛
⎝⎜

⎞
⎠⎟
− 1
2

Nb − Na

NaNb

⎛
⎝⎜

⎞
⎠⎟
! 0   

which does not simplify further. If one puts in numerical values appropriate to the physical 

context, where the h’s are decimals and the N’s are numbers of order 102, it is obvious from the 

algebraic structure of this error-term that it will be very small. I have not been able to concoct 

numerical combinations where this error >.01, and usually it is smaller than that by one or two 

orders of magnitude. 

From geometric intuition it is pretty clear that when marked asymmetries Nb ≫ Na obtain, the 

hb : ha imbalance will be in the same direction, which exerts a “compensatory” influence in the 

error-expression. But even with these asymmetries large and (I think impossibly) reversed, such 

as 200 = Nb ≫ Na = 50 and .60 = hb < ha = .90, one gets an error of only .0075. 

However, it may not be sufficient that the error in finding the derivative’s zero is absolutely 

small, because our concern is with the mis-location of an abscissa-value, via a mis-location of 

the optimal cumulative frequency-value Nb. That is, we need to know how large an error ΔNb in 
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finding the Nb-value is produced by the error in mis-calling the hitmax cut as the cut which zeros 

the derivative 
dh

dN a

. This amounts to the question, “How much does Nb change per change in 

dh

dN b

?” We have therefore to deal with the second derivative. 

(It is convenient to use hitmax cut-values as substitutions, since these simplify; so the error is 

being measured in terms of what should be, not where we are.) 

We want to know the error in x-location due to approximating the zero of 
dh

dN b

 as if it were at 

hitmax, which it is not precisely. To get this x-error we must get the error in Nb. 

[25] Let v = d

dN b

ha + hb( )  

Then we are going to approximate the error ΔNb by the differential, so we want to evaluate 

[26] dN b

dv
Δv = ΔNb  approximately. 

So we want to evaluate 

 dN b

dv
= 1
dv
dNb

= 1
d
Nb

d ha + hb( )
dNb

⎡

⎣
⎢

⎤

⎦
⎥

  

[27] = 1
d 2 ha + hb( )

dNb
2

  

The denominator (second derivative of sum of hit-rates above and below x-cut with respect to 

cumulative frequency) is 

 Den = d
dNb

1
Na

dH s

dNb

+ H s

Na

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥ +

d
dNb

1
Nb

dHn

dNb

− Hn

Nb

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥   

which	  at	  hitmax	  is	  

[28]	   	   d
dNb

1
Na

− 1
2
+ ha

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥ +

d
dNb

1
Nb

1
2
− hb

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥  

which expands and re-arranges to give 
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 1
Na

d
dNb

H s

Na

⎛
⎝⎜

⎞
⎠⎟
− 1
Nb

d
dNb

Hn

Nb

⎛
⎝⎜

⎞
⎠⎟
+
ha −

1
2

Na
2 +

ha −
1
2

Nb
2   

 = 1
Na

Na
dH a

dNb

− H s
dNa

dNb

Na
2

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
− 1
Nb

Nb
dHn

dNb

− Hn
dNb

dNb

Nb
2

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
+
ha −

1
2

Na
2 +

ha −
1
2

Nb
2   

which at hitmax is 

	   = 1
Na

Na − 1
2

⎛
⎝⎜

⎞
⎠⎟ − H s −1( )
Na
2

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
− 1
Nb

Nb
1
2

⎛
⎝⎜

⎞
⎠⎟ − Hn +1( )
Nb
2

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
+
ha −

1
2

Na
2 +

ha −
1
2

Nb
2  

which simplifies to 

[29] = 2
Na
2 ha −

1
2

⎛
⎝⎜

⎞
⎠⎟ +

2
Nb
2 hb −

1
2

⎛
⎝⎜

⎞
⎠⎟  

This is the denominator of 
1
dNb

dv

  

so its reciprocal is the rate of change of Nb with respect to the first derivative d
dNb

ha + hb( ) . So 

we have, at hitmax, 

[30] dNb

dv
= 1
2
Na
2 ha −

1
2

⎛
⎝⎜

⎞
⎠⎟ +

2
Nb
2 hb −

1
2

⎛
⎝⎜

⎞
⎠⎟

 

The error in the derivative v is 

[31] Δv = ha
Na

− hb
Nb

⎛
⎝⎜

⎞
⎠⎟
− 1
2

Nb − Na

NaNb

⎛
⎝⎜

⎞
⎠⎟
≠ 0  

because it should be at zero and the above is its actual value at hitmax, from Equation [30]. 

So the error Nb is, approximating by the differential, 

/ 
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[32] 

 

ΔNb !
dNb

dv
Δv =

ha
Na

− hb
Nb

⎛
⎝⎜

⎞
⎠⎟
− 1
2

Nb − Na

NaNb

⎛
⎝⎜

⎞
⎠⎟

2
Na
2 ha −

1
2

⎛
⎝⎜

⎞
⎠⎟ +

2
Nb
2 hb −

1
2

⎛
⎝⎜

⎞
⎠⎟

 

substituting from [30] and [31]. 

This simplifies to 

[33] 

 

ΔNb !
dNb

dv
Δv = NaNb

2

Nb ha −
1
2

⎛
⎝⎜

⎞
⎠⎟ − Na hb −

1
2

⎛
⎝⎜

⎞
⎠⎟

Nb
2 ha −

1
2

⎛
⎝⎜

⎞
⎠⎟ + Na

2 hb −
1
2

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

 

which is easily shown (by plugging in “bad and unlikely” numerical values) to be satisfactorily 

small. 

Numerical Examples 

A “bad” (large-error) setup would be if Nb ≫ Na but ha ≫ hb, unlikely [impossible?] to occur 

because large ha will, as pointed out above, be associated with the larger Na, and this makes the 

numerator of [33] self-corrective toward smallness. But suppose we have the bad situation 

Na =   50 ha = .90 

Nb = 200 hb = .60 

Substituting these values in the expression for ΔNb yields an error 

 ΔNb =
200( ) 50( )
2

200( ) .40( )− 50( ) .10( )
40,000( ) .40( )− 2,500( ) .10( )

⎡

⎣
⎢

⎤

⎦
⎥ = 23.8   

so that even this extreme setup is off only some 24 cases in the cumulative frequency Nb, which 

would not shift the cut more than one class-interval (given sample size appropriate for the 

method’s use, and operating in the middle region of the manifest x-distribution.) Note: I am 

inclined from geometry to believe that these numerical values are impossible, but have not been 

able to prove it analytically. 

The usual situation would be for the Na : Nb and ha : hb asymmetries to go in the same 

direction. Suppose the values are [I chose these arbitrarily, not ad hoc] 

Na =   50 ha = .60 

Nb = 200 hb = .90 



	   	   16	  

Then the error in ΔNb is 

 ΔNb =
200( ) 50( )
2

200( ) .10( )− 50( ) .40( )
40,000( ) .10( )− 2,500( ) .40( )

⎡

⎣
⎢

⎤

⎦
⎥ = 0.0000   

A more symmetrical case, with both the hit-rates and total frequencies nearer to equality 

above and below, 

Na = 100 ha = .70 

Nb = 150 hb = .80 

gives us 

 
 
ΔNb !

150( ) .20( )− 100( ) .30( )
150( )2 .20( )− 100( )2 .30( )

⎡

⎣
⎢

⎤

⎦
⎥ = 0.0000   

Or, taking a “weaker” indicator, with less discriminating power than one of the better MMPI 

keys, suppose 

Na = 100 ha = .65 

Nb = 150 hb = .75 

the error in cumulative frequency is 

 ΔNb =
100( ) 150( )

2
150( ) .15( )− 100( ) .25( )

22,500( ) .15( ) + 10,000( ) .25( )
⎡

⎣
⎢

⎤

⎦
⎥   

 = 7500 −2.5
5875

⎛
⎝⎜

⎞
⎠⎟   < 4 cumulative cases, 

which would very rarely displace the cut into an adjoining x-interval. 

I conclude that the maximum of sum of hit-rates above and below an x-cut is achieved by a 

cut very close to hitmax, and therefore the x-cut which maximizes the manifest statistic 

yd (x) = ya (x)− yb (x)  is approximately the hitmax cut, give or take an error of one class-interval 

at most. 

If the y-indicator is a dichotomous “sign,” this procedure amounts to finding the x-cut such 

that the y+-rates above and below the x-cut differ maximally. The latent situation is then 

represented by 

[34] pya
+ (x)− pyb

+ (x) = Δy H s

Na

+ Hn

Nb

−1
⎛
⎝⎜

⎞
⎠⎟
= psy − pny( ) H s

Na

+ Hn

Nb

−1
⎛
⎝⎜

⎞
⎠⎟
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[35] = Δpy
H s

Na

+ Hn

Nb

−1
⎛
⎝⎜

⎞
⎠⎟

  

since the “mean value” of a dichotomous indicator is simply the proportion of cases where it is 

present. This relation shows further that if the “output” indicator y is initially continuous but 

treated dichotomously (by locating a y-cut), the preliminary y-cut which maximizes the 

maximum attainable for pya
+ (x)− pyb

+ (x)using the method of this section is that y-cut which 

yields, in the latent situation, the largest y-“validity” in one sense, to wit, the largest difference 

between the valid positive rate psy and the false positive rate pny. So that a joint search for sliding 

cuts on both x and y which chooses the cut-pair (xc, yc) by maximizing the difference in (y+)-

“sign” proportions above and below the x-cut has the simultaneous property that 

1.  (psy – pny) is maximized, exactly 

2.  (Hsx + Hnx) is maximized, approximately 

c. Estimating base-rate P most directly from two covariances and K 

In Section 1 the base-rate P is estimated by summing the estimated latent interval frequencies 

nsi and nni over all intervals. These latent interval-frequencies had in turn been estimated via the 

constant K = xs − xn( ) ys − yn( ) , inferred from the value of the hitmax interval covariance. But we 

can bypass the summation procedure and estimate P directly, once K is obtained. The grand 

covariance of the manifest distribution depends upon K and P only, that is, in latent terms, 

[36] covt = PQ xs − xn( ) ys − yn( )  

[37] =  KP 1– P( )  

a quadratic in P, since K has been estimated from the hitmax statistic covh(xy) and covt(xy) is an 

observed statistic of the manifest (mixed) distribution. Solving this quadratic we have 

 P =
K ± K2 − 4Kcovt xy( )

2K
  

[38] = 1
2
± 1

4
−
covt xy( )
K

  

Since 0 <
covt xy( )
K

<1/ 4  both roots are real and lie between 0 and 1, so the selection of root 

cannot be made without additional considerations, i.e., we have to decide whether the schizotype 
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base-rate is  > 1/2 or < 1/2. For this reason the more laborious cumulative method of Section 1 

may be preferable, using the present method as a consistency test. However, we are practically 

certain to make the correct choice if we decide so that the P : Q asymmetry is in the same 

direction as the Na : Nb asymmetry, because (as is shown in sub-section 2d following) the ratio of 

[(Hit-rate above) – 1/2] to [(Hit-rate below)  – 1/2] is very nearly proportional to the manifest 

ratio Na : Nb of frequencies above and below the hitmax cut, from which it follows that the base-

rate asymmetry is in the same direction as the asymmetry of cases above and below the cut. Only 

in a situation very close to P = Q and Na = Nb would this choice be wrong; and in such 

situations, of course, the two roots will be so close together (both " 1/2) that choosing wrongly is 

a pragmatically unimportant mistake. 

d. A relation between the manifest frequencies above and below hitmax cut, and the latent 

hit-rates. 

A somewhat surprising near-proportionality obtains between the deviation of hit-rate from 

1/2 and the manifest (mixed-taxon) frequency determined by a hitmax cut, although geometric 

intuition dispels some of the oddity. We define two hit-functions 

[39] uax = hax −1/ 2 =
H sx

Nax

−1/ 2  

[40] ubx = hbx −1/ 2 =
Hnx

Nbx

−1/ 2  

dropping the x-subscript from here on, and noting that these hit-rates are proportions of the 

manifest frequencies Nax and Nbx, not the “valid positive” and “valid negative” rates ps(x) and 

pn(x), whose denominators are the true taxon frequencies Ns and Nn. 

Then we show that, to a very good approximation, 

[41] 
 

ua
ub
!
Na

Nb

  

at the hitmax cut. 

Proof 

Lemma: We first obtain a (non-approximative) relation between the derivatives of the hit-

functions ua(x), ub(x) and the manifest frequencies, namely, 
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[42] ′ua (x)
′ub (x)

= − Nb

Na

ua (x)
ub (x)

 

when	  x	  =	  xhitmax.	  
The hit-function derivatives are 

 ′ua (x) =
d
dx

ha −1/ 2( ) = d
dx

H s( )
Na( ) =

Na ′H s − H s ′Na

Na
2  

 = − fsNa − H s (− ft )
Na
2  

 = − fsNa + 2 fsH s

Na
2  Since ft = 2fs at hitmax 

 = fs
Na

2 H s

Na

−1
⎛
⎝⎜

⎞
⎠⎟

  

[43] ′ua (x) = 2
fs
Na

ua   

Similarly for the hit-function below, 

 ′ub (x) =
d
dx

hb −1/ 2( ) = d
dx

Hn( )
Nb( ) =

Nb ′Hn − Hn ′Nb

Nb
2  

 = Nb fn − Hn ( ft )
Nb
2  

 = Nb fn − 2 fnHn

Nb
2  Since ft = 2fn at hitmax 

 = fn
Nb

1− 2Hn

Nb

⎛
⎝⎜

⎞
⎠⎟

 

[44] ′ub (x) = −2 fn
Nb

ub  

Dividing [43] by [44] and recalling that fs = fn at hitmax, 

[45] ′ua
′ub
= − Nb

Na

ua
ub

 

which is in itself an interesting fact about the hitmax cut. 

Eq	  u'a(x)	  =…	  
In	  numerator	  HsN'a	  was	  
originally	  	  mis-‐typed	  as	  HaN'a	  
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Given this lemma, the proof is immediate. In Section 2 (b) above we saw that the derivatives 

d
dNb

ua( )  and d
dNb

ub( )  are equal except for algebraic sign, to a very close approximation, at the 

hitmax cut. Hence, since 

[46] ′ua =
d
dNb

ua
⎛
⎝⎜

⎞
⎠⎟
dNb

dx
⎛
⎝⎜

⎞
⎠⎟   

Chain Rule 

[47] ′ub =
d
dNb

ub
⎛
⎝⎜

⎞
⎠⎟
dNb

dx
⎛
⎝⎜

⎞
⎠⎟  

 
Chain Rule 

we can write, at hitmax, 

[48]   ua
′ ! −ub

′   

very nearly. Substituting [48] in [45] we get the desired 

[49] 
 

ua
ub
!
Na

Nb

  

at the hitmax cut. 

This can be obtained directly from the general expressions for derivatives of hit-rates above 

and below with respect to cumulative frequency, Equations [20]-[21] which expressed in terms 

of ua = (ha −1/ 2)  and, ub = (hb −1/ 2) tell us that, everywhere, 

[50] dua
dNb

= 1
Na

ua +
dH s

dNb

+ 1
2

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥   

[51] dub
dNb

= − 1
Nb

ub +
dHn

dNb

− 1
2

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥   

so at hitmax, where 

[52] dH s

dNb

= − 1
2

 

[53] dHn

dNb

= + 1
2

 

we have 

[54] dua
dNb

= ua
Na
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[55] dub
dNb

= − ub
Nb

 

and therefore, at hitmax, 

[56] dua
dNb

= − Nb

Na

ua
ub

 

as well as [49]. 

From [50] and [52] we see that when a cut lies above hitmax, we have 

[57] dua
dNb

< ua
Na

 

that is, the rate of change of hit-function u above the cut is numerically smaller than the ratio of 

this function to frequency above the cut. Correspondingly from [51] and [53] the derivative of 

the hit-function ub below the cut with respect to cumulative frequency has an absolute value 

larger than the below-cut ratio, 

[58] dub
dNb

> 1
Nb

ub −
dHn

dNb

− 1
2

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥   

So for any cut above hitmax, the above-cut hit-function is changing slower than ua
Na

  and the 

below-cut hit-function is changing faster than ub
Nb

. This fact should permit an easy proof that the 

hitmax cut also maximizes the sum of hit-functions u = ua + ub = ha + hb – 1, but I have as yet 

been unsuccessful in constructing such a proof. 

e. A theorem concerning the sum of sums of squares above and below a cut in terms of 

the latent mean difference on the output indicator and the latent hit-rates on the 

input indicator3 

Consider a sliding cut xc on an input indicator x, and the associated statistics on an output 

indicator y determined by various choices of the x-cut. Intuition suggests that, on the intra-taxon 

independence assumption, the dispersions (by some appropriate measure) of the output-variable 

y when calculated separately upon the cases falling above and those falling below the x-cut 

should, in a general way, tend to be small when the x-cut is optimally located. That this must be 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
3	  This	  is	  the	  consistency	  test	  “Minimizing	  SSb	  +	  SSa”	  described	  in	  Meehl	  &	  Yonce	  (1996,	  p.	  1135).—LJY	  
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roughly true seems clear from the fact that the y-variance in any subpopulation is composed of 

the components of variance contributed by the intra-taxon sources of variation, whether 

systematic or random (including measurement error), plus a component of variance assignable to 

the between-taxon mean difference. Thus if we imagine an input indicator so highly valid when 

optimally cut that it separates the schizotypes and nonschizotypes quasi-perfectly, then 

practically all the cases lying above the cut will be schizotypic and practically all the cases lying 

below the cut will be nonschizotypic. Hence, the variance on the output indicator y when 

calculated on the above-cut cases will receive a negligible contribution from the sum of squares 

attributable to taxon difference, being based upon a sum of squares which reflects (almost) solely 

the y-variance of schizotypes. And similarly that quantity calculated upon cases lying below the 

x-cut will be dependent almost solely on the residual y-variance characteristic of a “pure” group 

of nonschizotypes. Hence it seems that as the amount of “mixture” in a subpopulation (i.e., its 

taxonomic heterogeneity, its being composed of more nearly equal proportions of the two latent 

taxa) increases, the dispersion on an output variable will, in a general way, tend to increase. 

This intuitive reasoning leads to the suggestion that one might derive an additional hitmax 

cut locator by relying on the notion of a minimum pooled sum of squares on an output indicator 

for the sub-populations falling above and below a sliding cut on an input indicator. That one 

should attempt to locate the hitmax cut on x by minimizing the sum of sums of squares on y 

above and below a sliding x-cut rather than by minimizing the sum of the variances is rather 

obvious, since the latter quantity is intrinsically “corrected” for differing frequencies above and 

below the cut, whereas the hitmax cut must take account of the difference in frequencies Na ≠ Nb. 

However, it can be shown that finding the minimum sum of sums of squares on y does not 

precisely locate the x-hitmax, except in the special case where the hit-rates above and below the 

x-cut are exactly equal. And we know that such a relationship, while it will be approximated 

rather closely except in the case of extreme distribution distortions or marked base-rate 

asymmetries, will not in general hold precisely. I believe however, that minimizing this sum of 

sums of squares achieves a hitmax cut location which is satisfactorily close, i.e., within a single 

class interval, and the grounds for supposing this are presented in section 4-f below. Since the 

demonstration is not completely satisfactory, I have not presented the method as an additional 

hitmax cut locator in the present section. But the first step in attempting such a proof turns out to 

be a theorem regarding latent values which is of some intrinsic interest, and which might provide 



	   	   23	  

a starting point for further developments. The theorem says that the sum of the sums of squares 

of an output indicator within the subpopulations lying above and below a sliding cut on an input 

indicator will be minimized when the cut is so chosen as to minimize a latent quantity which is 

equal to the frequency above the cut times the hit-rate above the cut times its complement, plus 

the frequency below the cut times the hit-rate below the cut times its complement. 

Proof 

Consider an input variable x on which we are locating a sliding cut, each value of which 

determines dispersion statistics on an output variable y, taken about the manifest y-means above 

and below the x-cut. 

Define: 

pa  =  Proportion of above-cut cases that are schizotypes = hit-rate above cut = ha =
H s

Na

 

qa  =  1 – psa = Proportion of above-cut cases that are nonschizotypes = miss-rate above cut 

= 1− ha = 1−
H s

Na

= M n

Na

 

pb  =  Proportion of below-cut cases that are schizotypes = miss-rate below cut 

= 1− hb = 1−
Hn

Nb

= M s

Nb

 

qb  =  Proportion of below-cut cases that are nonschizotypes = hit-rate below cut = hb =
Hn

Nb

 

Then from the general formula for variance of a mixed population, given the means and 

variances of the two sub-populations (latent taxa) the y-variances above and below are 

expressible in latent terms thus: 

[59] σ a
2 = paσ s

2 + qaσ n
2 + pa ys − ya( )2 + qa yn − ya( )2   

[60] σ b
2 = pbσ s

2 + qbσ n
2 + pb ys − yb( )2 + qb yn − yb( )2   

and multiplying by the frequencies above and below 

[61] Naσ a
2 = Na paσ s

2 + Naqaσ n
2 + Na pa ys − ya( )2 + Naqa yn − ya( )2   

[62] Nbσ b
2 = Nbpbσ s

2 + Nbqbσ n
2 + Nbpb ys − yb( )2 + Nbqb yn − yb( )2   

so adding [61]-[62] to get sum of manifest within-groups sums-of-squares above and below we 

have 
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[63] SSa + SSb = Na pa + Nbpb( )σ s
2 + Naqa + Nbqb( )σ n

2   

 +Na pa ys − ya( )2 + Naqa yn − ya( )2   

 +Nbpb ys − yb( )2 + Nbqb yn − yb( )2   

[64] = H s +M s( )σ s
2 + M n + Hn( )σ n

2   

 +H s ys − ya( )2 +M n yn − ya( )2   

 +M s ys − yb( )2 + Hn yn − yb( )2   

The first two terms of this, being Nsσ s
2 + Nnσ n

2( ) , are constant regardless of the x-cut. To 

minimize (SSa + SSb) is therefore to minimize the sum of the last four terms, call it S: 

[65] S = H s ys − ya( )2 +M n yn − ya( )2 +M s ys − yb( )2 + Hn yn − yb( )2   

Evaluating the first parenthetical term, 

 ys − ya = ys − pays + qayn( )  

 = ys − pays − qayn  

 = ys 1− pa( )− ynqa  

 = qa ys − yn( )  

[66] ys − ya = qaΔy  

Analogously for the other three parentheses, we have 

[67] yn − ya = − paΔy  

[68] ys − yb = qbΔy  

[69] yn − yb = − pbΔy  

Substituting [66] - [69] into [65] we obtain 

[70] S = H sqa
2Δy 2 +M npa

2Δy 2 +M sqb
2Δy 2 + Hnpb

2Δy 2   

[71] = Δy 2 H sqa
2 +M npa

2 +M sqb
2 + Hnpb

2⎡⎣ ⎤⎦   

which is minimized by minimizing the bracket. 

The bracketed quantity, a function of cumulative cases below, is more simply expressible in 

terms of the hit-rates and frequencies above and below, thus: 
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[72] b Nb( ) = H sqa
2 +M npa

2 +M sqb
2 + Hnpb

2   

and multiplying terms by Na

Na

 or 
Nb

Nb

 as desired, we have 

[73] b Nb( ) = Na
H s

Na

qa
2 + Na

M n

Na

pa
2 + Nb

M s

Nb

qb
2 + Nb

Hn

Nb

pb
2   

 = Na paqa
2 + Naqa pa

2 + Nbpbqb
2 + Nbqbpb

2   

 = Na paqa qa + pa( ) + Nbpbqb qb + pb( )   

 = Na paqa + Nbpbqb   

[74] b Nb( ) = Naha 1− ha( ) + Nbhb 1− hb( )   

which is to be minimized. The expression for the sum of sums of squares of y reflecting 

dispersion of y within cases falling above and below the x-cut is then 

[75] SSa + SSb = Nsσ s
2 + Nnσ n

2 + Δy 2 Naha 1− H a( ) + Nbhb 1− Hb( )⎡⎣ ⎤⎦  

which is a minimum when the sliding x-cut is located so as to minimize the bracket. It is evident 

that this cut cannot, in general, be exactly the hitmax cut, because the bracket expands as 

[76] bNb = Naha + Nbhb − Naha
2 − Nbhb

2   

[77] = Naha + Nbhb( )− Naha
2 + Nbhb

2( )   

and since the derivative of the first parenthesis is zero at hitmax, the derivative bʹ′(Nb) cannot 

vanish there unless Naha
2 + Nbhb

2( )′  vanishes at hitmax, which, in general, it will not do (exactly). 

Further consideration of this line of thought is deferred to Section 4f below, but we note here that 

when b(Nb) is written in terms of the two differences between hit-rates and their squares, 

[78] bNb = Na ha − ha
2( ) + Nb hb − hb

2( )   
we get an intuitive appreciation of why the hitmax cut almost minimizes (SSa + SSb), since the 

difference between a hit-rate and its square is a decreasing monotone function of the hit-rate, so 

that if the two hit-rates are not too disparate, these (h – h2) differences are changing at nearly the 

same rate as we slide the x-cut along in the intermediate region. 
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f. A theorem concerning sums of sums of cross-products above and below a cut in terms 

of the latent mean differences on two output indicators and the latent hit-rates on the 

input indicator 

A relationship analogous to that shown in the just preceding subsection (4-e) of course 

obtains for the (frequency-weighted) covariance of a pair of output variables as it does for the 

(frequency-weighted) variance of a single output variable. Consider an input variable x on which 

we are locating a sliding cut, each value of which determines two covariance statistics on the 

output-variable pair (y, z), taken about the manifest means ya , za( )  and yb, zb( ) calculated within 

the Nax cases above and the Nbx cases below the x-cut. Then from the general formula for the 

covariance of a mixed population, analogous to Equation [59] for the variance, the (yz)-

covariance within the Na above-cut cases is expressible in latent terms thus: 

[79] cova yz( ) = pa covs yz( ) + qa covn yz( ) + pa ys − ya( ) zs − za( ) + qa yn − ya( ) zn − za( )  

and similarly the covariance below the cut can be written in latent terms, analogously to 

Equation [60], as 

[80] covb yz( ) = pb covs yz( ) + qb covn yz( ) + pb ys − yb( ) zs − zb( ) + qb yn − yb( ) zn − zb( )  

From here on the derivation proceeds, mutatis mutandis, as in the preceding subsection 

Equation [61]-[75], terminating in the covariance analogue of [75] which is identical with [75] as 

to its variable bracket, differing from [75] in the constant terms only, that is, 

[81] Na cova yz( ) + Nb covb yz( ) = Ns covs yz( ) + Nn covn yz( )  

 +ΔyΔz Naha 1− ha( ) + Nbhb 1− hb( )⎡⎣ ⎤⎦  

the first two terms being constant, and the product of the latent mean differences Δy Δz  being 

constant, analogous to the squared latent mean difference Δy 2  in Equation [75]. Hence the sum 

of sums of cross-products is minimized by minimizing the bracket Naha 1− ha( ) + Nbhb 1− hb( )⎡⎣ ⎤⎦ . 

g. Two consistency tests based upon median cut of one manifest distribution and 

maximizing sign-concordance with another 

We show that when an indicator y is cut at its manifest median, and a sliding cut on x is 

chosen so as to maximize xy-sign-concordance in a fourfold table, then (1) the y-mean for cases 
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lying at that x-cut must equal the grand mean, and (2) this x-cut is the cut that maximizes the 

numerator of a phi-coefficient. 

Proof 

Locate the median of the manifest y-distribution and fix this value as a y-cut, above which 

cases are called y+ and below which they are called y–. Then in latent terms (base-rates, valid and 

false positive and negative rates) we can write the equality of manifest frequencies above and 

below as 

[82] Ppsy +Qpny = Pqsy +Qqny   

that	  is,	  

[83] 
qny − pny
psy − qsy

= P
Q

  

i.e., the latent valid-minus-invalid rate differences are inversely proportional to the base-rates. 

We now locate an x-cut such that the sum of frequencies in the concordant cells of the (xy)-

fourfold table is a maximum. In PR-65-2 (pp. 17-18, Equation [10]) we showed that the 

maximum of concordance C(x, y) for any fixed y-cut satisfies the latent condition 

[84] 
fs x( )
fn x( ) =

qny − pny
psy − qsy

  

Combining [83]-[84] we have 

[85] fs x( )
fn x( ) =

P
Q

  

That is, the (unrelativized) ordinates of the latent frequency functions fs(x) and fn(x) at this x-cut 

are directly proportional to the base-rates. Hence the ratio of schizotypes to nonschizotypes 

among cases lying within a small interval containing these ordinates is P : Q, and the manifest y-

mean of those cases should be equal to the grand mean of y, in accordance with the weighted 

composite 

[86] yi = Pys +Qyn = yt   

If this is not approximately true, we infer that the postulated latent situation is somewhere 

incorrect, most likely as to the intra-taxon independence assumption, the y -mean in this x-

interval being displaced from y  because of an intra-taxon (xy)-correlation. 
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Corollary: In PR-65-2 we showed (Section 8, Equations [18]-[19]) that the “phimax” cuts on 

x and y, those cuts which maximize the numerator of the phi-coefficient = pxy
+ − px

+ py
+⎡⎣ ⎤⎦ , are the 

cuts which equalize the relativized frequency functions φs x( ) = φn x( ) and φs y( ) = φn y( )⎡⎣ ⎤⎦  on 

each indicator. But the x-cut where φs x( ) = φn x( )  is of course the cut where 

[87] fs x( )
fn x( ) =

P
Q

  

(since fs(x) = Pφs(x) and fn(x) = Qφn(x)), and that is the x-cut located above. Hence this 

correspondence is a further consistency test. 

h. A 3-indicator system of equations based upon hitmax interval statistics and the 

grand means 

Once the hitmax interval is located and one or more consistency tests reassure us that the 

latent situation is well approximated by the model, there is available a very short and direct path 

to estimating the latent means and base-rates, relying solely upon hitmax interval statistics and 

grand means. Its defect is in its reliance on a system of five equations (three of which are in the 

second degree), and hence presumably subject to considerable sampling instability unless the N 

is very large. We require a set of three indicators, say, w as an “input” indicator with x and y as 

“output” indicators. We first locate w-hitmax by one or more of the hitmax-locating methods 

described in PR-65-2 or the present report, and test consistency insofar as possible with this 

limited determination. Then in the hitmax interval we infer, for the output indicators x and y, the 

relations between wh-interval manifest means and the latent taxon means, 

[88] yhw =
1
2
ys +

1
2
yn   

[89] xhw =
1
2
xs +

1
2
xn   

For the observed (xy)-covariance of cases falling within this w-interval we can write 

[90] cov xy( )hw   =
1
4
xs − xn( ) ys − yn( )   

Finally, we know that the two grand (manifest) means of the entire mixed population are 

expressible in terms of the latent means and base-rates, 

[91] Pxs +Qxn = xt   
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[92] Pys +Qyn = yt   

Solving the system [88]-[92] for the 5 latent variables xs , xn , ys , yn , and P we have our 

main parameters directly. 

Consistency check: Over the mixed population the observed grand covariance should be 

calculable from the five inferred latent values by the relation 

[93] cov xy( )t = PQ xs − xn( ) ys − yn( )   

i. A 5-indicator system of equations based solely upon hitmax interval covariances 

The general expression for the covariance of an output indicator-pair x, y among cases falling 

in an input-interval wi is 

[94] covw xy( ) = piqi xs − xn( ) ys − yn( )   

where pi and qi are the proportions of schizotypes and nonschizotypes in that interval. In the 

hitmax interval this becomes 

[95] cov xy( )hw =
1
4
xs − xn( ) ys − yn( )  

as previously shown. Equation [95] is of second degree (cross-products) in four unknowns. Each 

indicator added to an indicator-family presents two more unknowns, i.e., the means of the two 

latent taxa. (The covariance of a given indicator-pair in the hitmax interval of w should, of 

course, be the same as it is at hitmax of a different input indicator, say, v. Hence this does not 

boost the number of available equations, but merely provides a consistency test.) 

So we have 2k unknowns for a k-indicator family. The number of such equations being the 

same as the number of indicator-pairs, for solubility we must have 

[96] 2k = k k −1( )
5

  

which is satisfied by k = 5. If k < 5 the system is indeterminate; if k > 5 it is (generally) 

inconsistent, appropriately handled as an overdetermined system containing error. When k = 5, as 

with an indicator-family (x, y, z, u, v), we have a system of 10 equations 
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[97] 

 

xsys − xsyn − xnys + xnyn = C1
xszs − xszn − xnzs + xnzn = C2

!
!

usvs − usvn − unvs + unvn = C10

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪

 

where the right-hand constants are obtained from hitmax-interval observed covariances by 

expressions of the form 

[98] Cm = 4cov xy( )hz   

3. A single-indicator method, relying on the (testable) 

hypothesis of intra-taxon normality 

a. The main methods presented in PR-65-2 and the present report deliberately avoid the 

familiar assumptions of normality and homogeneity of variance, assumptions which are not 

likely to obtain (and have frequently been shown not to obtain) when the domain of investigation 

is a clinical taxon such as schizotypy. However, we have hypothesized that some of the intra-

taxon covariances are negligible, and that others are at least approximately equal; and as has 

been repeatedly emphasized in the text, these are approximations, whose effect upon the 

accuracy of the methods proposed remains for more thorough investigation. At present it is not 

apparent whether mild departures from the assumptions of zero (or equal) intra-taxon 

covariances are more, or less, damaging than the normality assumption which we have thus far 

avoided. It would seem appropriate therefore to investigate, in both Monte Carlo and empirical 

tests of the method, the robustness of a taxon-identification technique relying upon intra-taxon 

normality. 

Secondly, to the extent that this assumption is directly or indirectly testable within the data 

— and therefore, more properly, to be spoken of as a statistical hypothesis rather than an 

assumption — estimates of the latent parameters made upon that assumption (and not wholly 

redundant with the other methods) can provide additional consistency tests and increase our 

confidence in the estimates. 

Thirdly, there may arise situations, especially in the very early stages of the research in a 

domain, where only two single indicators are available for study on a sufficiently large sample, 

or even where there is only a single indicator for which clinical experience, previous research, 
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and theoretical considerations jointly lead to a legitimately high prior belief that the indicator 

discriminates powerfully between the latent taxa of interest. 

Further, just as it was pointed out that one can improve the approximation to zero or equal 

intra-taxon covariances by transformations (or, in the case of psychometric devices, by item-

analysis) so here it may be possible, through a preliminary item-analytic procedure employing 

crude clinical criteria, to reduce extreme departures from the normality assumption. While I do 

not here consider the details, it seems plausible to suppose that even if intra-taxon normality is a 

poor approximation, and the variables are refractory to score-transformations or item-analysis 

aimed at improving this approximation sufficiently, it would still be possible to employ the 

method to be described in this section. What we would need then to do is to retreat from 

postulated normality to a somewhat more general form of Pearson’s generalized frequency 

function, e.g., one requiring, say, only the weaker assumption of unimodality within taxa. 

b. The basic idea is extremely simple and relies upon the fact that the manifest (= mixed-

taxa) frequency distribution is the sum of the latent distributions. It is obvious that one cannot 

assign all six latent parameters independently. Considering the three distribution parameters 

required on the normality assumption (i.e., the base-rate, mean and sigma within a taxon), as 

soon as we choose a triplet of values (Ns, xs , σs) for the schizotypes, then the manifest 

distribution’s values determine the corresponding parameters (Nn, xn , σn) for the 

nonschizotypes. The “searching procedure” therefore consists of assigning arbitrary (sliding) 

values to the base-rate frequencies Ns, Nn [Nn = N – Ns], then to the latent means, and finally to 

the latent sigmas. This logical tree terminates in predicted resultant values for the observed 

(mixed-taxa) frequency distribution. We then compute a chi-square on the discrepancy between 

the predicted and observed frequencies, and record it. It serves first as a significance test (testing 

departure from the postulated latent model-cum-parameter values) but also, more importantly, as 

a rough measure of the poorness of our approximation. For each value of xs , we can generate a 

family of curves of these chi-squares, each curve showing the chi-square values as a function of 

the arbitrarily assigned σs. A super-family of such curve-families is generated by each assigned 

Ns. The Ns-super-family which contains the curve-family which in turn contains the curve whose 

minimum chi-square is smallest is then the best approximation we can get. Ideally it would be a 

nonsignificant chi-square and would corroborate the intra-taxon normality assumption. However, 

since the null hypothesis is always false (Lykken 1966, Meehl 1967, Lykken 1968) and all such 
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assumptions are approximations (easily refutable by large samples such as the present method 

demands) it is sufficient for practical purposes if the minimum achievable chi-square is “small,” 

although statistically significant. 

c. The basic equations for the latent values of the six parameters ( xs , xn , σs, σn, Ns, Nn) 

which completely characterize the latent situation on the intra-taxon normality hypothesis are: 
[99] Nn = N − NS   

[100] xn =
N xt − Ns xs

Nn

 

 Nnxn = N xt − Ns xs   

 Nnxn + Ns xs = N xt   

 xn∑ + xs∑ = xt∑ An identity     

[101] xs
2 = Ns σ s

2 + xs
2( )

Ns

∑   

[102] xn
2

Nn

∑ = xt
2

N

∑ − xs
2

Ns

∑   

[103] σ n
2 = 1

Nn

  xn
2

Nn

∑ − xn
2   

Thus an arbitrary assignment of schizotypic base-frequency Ns determines the nonschizotype 

base-frequency Nn as in [99]. Given those frequencies, an arbitrary assignment of the schizotype 

mean xs  then determines the nonschizotype mean xn  as in [100]. Given these frequencies and 

means, an arbitrary assignment of the schizotypic standard deviation σs determines the 

nonschizotypic standard deviation σn by solving serially [101] - [102] - [103]. Each of the latent 

normal distributions being completely characterized by its three parameters (N, x , σ), we enter a 

table of normal-curve integrals to get the frequencies ns and nn with which the two taxa should 

occur in each class-interval, and their sum nci = (ns + nn) is the calculated mixed-taxon frequency 

for that interval. We then compute the chi-square over all intervals on the discrepancies between 

the calculated values nci and the observed frequencies noi. 

There being three independently assignable parameters, what we deal with computationally is 

a super-family of curve-families, each curve within a family showing the relation between 

goodness-of-fit and the arbitrary values of the third parameter [= σ]. Thus: 

The	  3-‐line	  expansion	  on	  Eq	  [100]	  
was	  added	  by	  Meehl	  in	  1989	  for	  
clarification.	  
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(1)  First curve-family: Parameters Ns (and hence Nn = N – Ns) fixed. 

(a)  First curve of first family: Parameters Ns, Nn, xs  (and hence xn ) fixed. 

((1))  First point on first curve of first family: Parameters Ns, Nn, xs , xn , σs (and hence 

σn) fixed. Chi-square of theoretical – observed discrepancy plotted as ordinate 

against values of σs as abscissa.  

((2))  Second point on first curve of first family: Parameters Ns, Nn, xs , xn , as in ((1)), 

but a new arbitrary value of σs (and hence σn ). 

(b)  Second curve of first family: Parameters Ns, Nn fixed as in (a), but a new arbitrary value 

of xs  (hence xn ). 

(c)  And so on for set of curves of first family. 

(2)  Second curve-family: New parameters Ns (and hence Nn = N – Ns) assigned. 

Then repeat the entire process as under (1), and so forth. We thereby produce a super-family 

of curve-families of curves  (of Chi-squares as a function of σs, for fixed Ns and xs ). Each curve 

will have a minimum (best fit) value for an arbitrary σs-assignment. Each curve-family will have 

a minimum of these minima. We want the minimum of these minima of minima. That minimum-

of-minima-of-minima is then the best fit attainable by optimal arbitrary assignments of Ns, xs , 

σs, given the normality hypothesis. Statistical significance of this chi-square refutes the exact 

normality hypothesis. But a “small” numerical value of borderline significance would suggest 

that the approximation is good. 

Intuitively, it seems that the orderliness exhibited by the changes in minima is a rough test of 

the basic assumptions. That is, if the latent model is essentially valid, each curve should pass 

through a clear, inspectional minimum, showing a definite trend down to this unique low value 

and up again. The minima of the several curves in each family should also exhibit an orderly 

progression with respect to the arbitrary xs -values determining these curves; and these minima-

of-minima should display an orderly passage through a minimum as we move along the abscissa 

Ns within the superfamily. 

As of this writing, a preliminary trial of the method utilizing “real data,” the taxa being sex 

and the single indicator-variable being MMPI Scale 5, is not completely analyzed. The graphs 

show a minimum very close to the true parameter values, and their steepness is apparently much 
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greater in the vicinity of the true values. But one “maverick” curve has a minimum 

uncomfortably close to the best one, and arises from parameter assignments that are grossly 

erroneous. This curve could, hopefully, have been spotted as aberrant by virtue of its being 

clearly unlike the others in its curve-family (e.g., they are parallel and orderly in progression, it is 

not); but its mere occurrence raises questions about the method. When thoroughly analyzed, 

these data will be discussed in a forthcoming Report of the Psychiatric Research Laboratories 

(Meehl, Lykken, Burdick and Schoener, 1969) 

4. Suggested further developments, and some queries 
a. Iterative procedure 

In PR-65-2 it was suggested, on the basis of some numerical examples, that slight-to-

moderate departures from the assumption of zero (or at least equal) intra-taxon covariance might 

nevertheless permit reasonably accurate estimates of the latent parameters. The various 

consistency tests (PR-65-2, Section 9) will, hopefully, provide some empirical check on the 

extent to which this conclusion is fulfilled by a set of real data. If it is not, the general method 

may perhaps still be useable by “bootstrapsing” through a series of successive approximations. 

Suppose that the intra-taxon covariances are not sufficiently close to zero as between the 

“output” indicators x and y, but that they are negligible as between an “input” indicator w and 

each of the former. Then the latent means xw , yw  of cases lying within successive w-intervals 

will vary solely as a function of the schizotype-proportions pi of these w-intervals; but the 

(xy)-covariance will not have its maximum at pi = qi = 1/2 (i.e., the hitmax cut on w will be 

mis-located by the covariance-maximizing search of PR-65-2, Section 3). Therefore the inferred 

pi qi = 1/4 for the pseudo-hitmax interval will be slightly in error (see, e.g., PR-65-2, pp. 51-53) 

and, hence, the constant K = ΔxΔy  will be in systematic error. When we proceed by the simple 

method presented in Section 1 of the present report to compute the schizotype-rates pi for other 

w-intervals, those estimates will then be doubly biased, first by the systematic error in K, and 

also by the fact that covw(xy) is not adequately approximated by the expression 

 covw(xy) = K pi qi 

but requires instead the more general expression (for possibly unequal intra-taxon covariances) 

[104] covw(xy) = K pi covs(xy) + qi covn(xy) + K pi qi 
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But perhaps we can employ the parameter-estimates obtained in Section 1 above as first 

approximations to reach improved estimates via the hitmax cut, and re-cycle? Such an approach 

seems intuitively plausible, but I have put it in this “suggestion” section, lacking an analytic 

proof that such an iterative procedure will converge to successively better approximations. At 

least it seems plausible to argue that, so long as no direct circularity is involved, an improvement 

in the consistency-tests produced by such an iterated method would tend to corroborate the 

hypothesis that it was converging successfully. 

By the simplified method of Section 1 we have moved sequentially through hitmax-location 

→ covh(xy)-estimate → K-estimate → pi-estimates for all w-intervals → Ns-estimates for 

all w-intervals → estimates of base-rate P, and thence of latent intra-taxon means 

xs , xn, ys , yn, ws , wn  to first approximations. We now draw an arbitrary w-cut on the manifest 

w-distribution (say, at the w-median). We note that this cut does not rely on any (x, y)-statistics, 

and in particular, does not depend upon (xy)-covariance data of any sub-sample or of the whole 

sample. Now the (xy)-covariances of the subsets of patients lying above, and below, this w-

median are observable quantities, and “experimentally independent.” Our first cycle has, 

however, drawn us the inferred latent distribution, so we “know” (to a first approximation) the 

latent hit-rates psa and qnb for these two sub-samples defined by the arbitrary w-cut. For the cases 

lying above the w-median, we write the observed (mixed-taxon) (xy)-covariance in terms of these 

latent quantities, from generic Equation [104] above, 

[105] covaw xy( ) = psa covs xy( ) + pna covn xy( ) + psa pna xs − xn( ) ys − yn( )   

 = psa covs xy( ) + qsa covn xy( ) + ′K psaqsa   

indicating by Kʹ′ the revised K-estimate calculated from the approximate latent means.    

Similarly for the cases below the w-median we have 

[106] covbw xy( ) = psb covs xy( ) + qsb covn xy( ) + ′K psbqsb   

The quantities psa, qsa, psb, qsb and Kʹ′ are “knowns” (first approximation) and the left-hand 

covariances covaw(xy), covbw(xy) are manifest statistics. So we have a pair of simultaneous 

equations linear in the intra-taxon “unknowns” covs(xy) and covn(xy), which we solve to get a 

second approximation to these latter. We can now drop the idealized initial assumption of zero-
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or-equal intra-taxon covariance, and rewrite the general w-interval expression for manifest 

covi(xy) as 

[107] covi xy( ) = pi covs xy( ) + qi covn xy( ) + ′K piqi   

This equation is then solved as in Section 1 for every w-interval, yielding a revised set of 

schizotype-proportions ′pi  for all the w-intervals, in turn yielding new absolute schizotype-

frequencies ′Ns , a new base-rate ′P , and new latent means ′xs , ′xn, ′ys , ′yn,  ′ws ,  and ′wn . The whole 

process is then repeated, and we continue iterating until (hopefully) the estimated latent values 

cease to change and the consistency tests are reasonably satisfied. 

The presently unanswered questions are, of course, (1) Does the iteration rely upon some 

subtle “circularity” leading to a misleading convergence?, and (2) Does the latent model insure 

that convergence will occur? Obviously the first question is the more important one, since if the 

second question is answered negatively, we will readily discover that fact in any empirical 

situation of non-convergence. 

b. Preliminary tests of the manifest distribution to warrant method’s use 

(1) If there are available, as will usually be the case, any “crude, gross” taxonomic criteria 

(e.g., medical chart diagnosis, previously well-validated MMPI patterns) it would presumably be 

desirable, before investing time and money in application of these techniques, to examine some 

preliminary questions, for which such coarse criteria probably suffice. There are two main 

preliminary questions: 

(a) Does each of the contemplated indicator-variables show a moderate-to-large 

discrimination against the crude criteria? It is difficult, pending adequate Monte Carlo study, to 

set any minimum value on the coarse concurrent validity level as a condition precedent to 

“bootstrapsing” construct validity by procedures like the present one (Cronbach and Meehl, 

1955; Meehl, 1959). But contemplation of graphical frequency-distributions (and a little 

numerical juggling) will perhaps convince most readers that mean differences of less than around 

one sigma are not encouraging. I do not myself believe that this unduly restricts the applicability 

of the method, considering the fact that mean concurrent-validity differences in the range 2-3 

sigma are often attainable with MMPI scales, when reasonable care is exercised in conducting 

the investigation. 
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(b) The second consideration is, of course, the intrataxon covariance assumption. Ideally 

all the intrataxon covariances should be zero. As has been shown, however, it will suffice if the 

intrataxon covariances are approximately equal for those indicator-pairs employed as output 

indicators; although we must still require that the intrataxon covariance of each of these with an 

input indicator should be near zero, otherwise the estimate of latent mean values from values in 

the hitmax interval will be invalid. 

(c) If preliminary study suggests that the intrataxon correlations are too large and 

unequal, but there are theoretical reasons (e.g., qualitative nature of a potential indicator 

suggested by a theory of the schizotaxic defect) or previous empirical data supporting the 

indicator’s high validity, either or both arguing for retention of the indicator in the trial-indicator 

family; then score transformations should be attempted and, if the indicator is a psychometric 

one (e.g., an MMPI scale or sub-scale) item-analysis should be carried out in which the basis for 

retaining an item in the modified indicator is a conjunctive condition, namely, low item-scale 

correlation between the item and other indicators in the provisional family, and moderate-to-high 

item-validity against the crude criterion. 

(2) It may happen (although very rarely) that no such crude criteria are available, or that their 

intrinsic validity (or net validity as affected by unreliability) is not trusted sufficiently to use 

them even for preliminary assessment of the situation. This will hardly be the case in any clinical 

population with respect to the establishment of each indicator’s respectable discriminating 

power. But it might be true with respect to the intrataxon covariance assumptions, since the 

diagnostic habits of clinicians will “force” some degree of spurious intrataxon covariance 

between indicators that are already clinically recognized as clustered and hence presumably 

contaminative. There also arise situations, such as psychometric studies of family members of 

schizophrenic probands, where we have no theoretical or empirical assurance that an indicator 

behaves the same way with regard to compensated schizotypy as it does with regard to 

diagnosable decompensated schizotypy, and adequate (intensive-study) diagnostic assessment 

here will often be absent if the N is sufficiently large to justify use of the method. In such 

situations I know of no way to check on the intrataxon covariance assumption except by 

applying the method followed by the consistency tests. If they indicate that something is badly 

wrong with the assumptions, one may run a direct empirical test of the intrataxon covariance 

assumption upon cases provisionally identified by the first iteration of the technique. 
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However, the requirement of respectable single-indicator validity can be refuted, with some 

confidence, without using any external criteria. If a latent taxonomy exists, and if it is productive 

of sizable mean differences between the two latent frequency distributions on a single indicator, 

the manifest (mixed-taxa) distribution of that indicator should reflect the latent situation by 

showing a considerable departure from normality. Specifically, the effect of two latent 

distributions being superimposed to generate the manifest distribution will be platykurtosis. Here 

again, thorough Monte Carlo study will probably be necessary in order to set a suitable condition 

on the minimum amount of platykurtosis; although, if the sample size is sufficient to justify 

using the method at all, at least a statistically significant departure from normality, in the 

platykurtic direction, should surely exist. A rough idea of the quantitative relationships involved 

here may be gleaned from the engineer Hald (1952) who discusses the present problem in an 

interesting section — little known among psychologists — on “heterogeneous distributions.” 

Hald shows, for the special case of two normal populations with equal sigma, that when the 

distance between the two means is three times the standard deviation (of the single latent 

distribution) the manifest distribution is clearly bimodal. With a distance of two sigma between 

the latent means, the joint distribution is strikingly platykurtic. Whereas for a mean difference of 

only one sigma (i.e., suppose the mean T-score of schizotypes were only T = 60 on the MMPI 

scale Sc), the manifest distribution when merely “eyeballed” does not differ conspicuously from 

a normal curve. These rough illustrative values are reassuring with regard to the kinds of 

empirical situations one is likely to meet. Hald also discusses our problem of “dissection of a 

heterogeneous distribution” in terms of plotting the cumulative manifest distribution frequencies 

on probability paper, where the latent heterogeneity is reflected graphically by marked 

departures from linearity in the plot. (See his pp. 152-158, and the prior explanation of the 

“fractile” concept, pp. 66-67, 102-103, 127-140). 

c. Estimating latent means from tails of manifest distribution  

In PR-65-2 (Section 14d) it was suggested that the latent means xs  and xn  might be 

estimated from the statistics of extreme high and low intervals of the manifest w-distribution. It 

is obvious that, just as the hitmax interval on w provides maximal “mixture” of the latent taxa (ps 

= qs = 1/2), so the very high or very low regions of w will be occupied by sub-populations which 

are very preponderantly schizotypic, or nonschizotypic, respectively. Whether this relative 
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taxonomic “purity” at the two tail-ends of the manifest w-distribution is sufficient to provide 

useful estimates of xs , xn , ys  
, yn , ... will depend upon w-overlap (i.e., validity of the input 

indicator) in relation to sample size. If the overlap on w is excessive, only very extreme 

w-regions will provide “unmixed” populations, these regions being perforce chosen so far out 

that the absolute frequencies in these intervals are too small to yield stable statistics. And, as 

always, the assumption of negligible intra-taxon covariance may give trouble, especially since 

rather slight departures from covs(xw) = covn(xw), harmless in intermediate regions, might 

produce disturbingly large systematic error in estimating xs  and xn when working with 

extremely deviant w-values on the input side. That is, the value of xs estimated upon cases lying 

within the very high w-intervals will reflect not only the ps ≫ pn “taxon impurity” of those 

intervals, but will also reflect any within-taxon dependence of x upon w. 

However, one is not confined to mere hoping that the approximations are close enough for 

reliance upon the tail-statistics. Before utilizing w-tail values of xw as estimators of the latent 

means xs , xn we can apply some consistency tests to the data that should forestall unjustified 

reliance upon the adequacy of the latent model’s approximation in these respects, as follows: 

(1) Behavior of covw(xy) at w-tails: 

In locating the hitmax interval of w we plotted covw(xy) to find its maximum. 

Considering parameter values, to the extent that the postulated latent model is a good 

approximation, the sole source of within-interval departures from covw(xy) = 0 is the taxon 

mixture of cases lying therein. Hence, neglecting sampling errors, the values of covw (xy) should 

fall off steadily as we consider w-intervals farther removed from w-hitmax in either direction, 

and should approach zero as ps(w) → 1 at upper tail and ps(w) → 0 at lower tail, respectively. 

The first observational condition for reliance upon tail-statistics as latent mean estimators is, 

therefore, a finding that the graph of covw(xy) becomes and remains flat (at " zero) for several w-

intervals at the high and low extremes. In practice, we would look for random-sampling 

fluctuations around a central value close to zero. (I am not clear whether an appropriate 

significance test exists for this purpose.) Actually the required cov(xy) behavior combines two 

conditions, (a) The covariances should cease to change systematically over these intervals, and 

(b) Their representative value over these intervals should be close to zero. If either of these 

conditions is appreciably violated, either the postulated latent situation is not an adequate 
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approximation, or the w-indicator has too much overlap to generate intervals for which ps(w) " 1 

[or ps(w) " 0] with the sample size under study. It is evident that the two conditions on tail-

behavior of covw(xy) reflect distinguishable aspects of the numerical approximation, only the 

first of which must be adequate before one can rely upon w-tails as estimators of the latent intra-

taxon values. Failure of cov(xy) to become constant over successive w-intervals reflects 

primarily further changes in ps(w) i.e., the latent distributions overlap excessively, so that 

extreme w-intervals are “mixed” rather than “pure.” Failure of covw(xy) to stabilize at zero (but 

settling down at some other value > 0) reflects mainly intra-taxon correlation between x and y, 

and while this departure from the model impairs the validity of certain other procedures (e.g., 

most of the consistency tests) it should not, so far as I can see, invalidate the use of tail-means as 

estimators. But it is worth noting that a stabilization of covw(xy) " C > 0 for extreme w-intervals 

warns us that the tail method will not work when the (x, y) pair of indicators is treated as input 

and output variable. And, contrariwise, if covw(xy) " 0 over a set of extreme w-intervals, we may 

infer the legitimacy of employing x-tails for estimating latent ys , yn  (and y-tails for estimating 

xs , xn ) insofar as the (xy)-covariance assumption is fulfilled; but of course the taxon-“purity” of 

the extreme x-intervals (or y-intervals) for that purpose remains to be tested. 

(2) Behavior of yw  (and of xw ) at w-tails: 

Whereas satisfactory behavior of covw(xy) gives us information about intra-taxon 

correlation between x and y, and also about non-mixture of taxa within sufficiently extreme 

w-intervals, the possibility of an unwanted dependence of y (and x) upon the input variable w is 

not reflected therein, but instead by systematic change in the y-means (and x-means) with change 

in w. If y [all the subsequent remarks in this sub-section apply, mutatis mutandis, to x as an 

alternative output variable] continues to increase with increases in w, even when we are working 

in extreme w-intervals for which covw(xy) " K, such a constellation of findings tells us that the 

assumption of zero intra-taxon covariance for y and w is false. Because if we can find 

sufficiently high (and sufficiently low) w-intervals to stabilize covw(xy), whether at zero or some 

other value, we can infer that taxon mixture has become and remained negligible over these 

extreme intervals (i.e., we are “out far enough” on w so that ps(w) " l and ps(w) " 0 in the high-w 

and low-w regions respectively.) But if taxon-mixture is negligible over a w-region, any 

systematic dependence of yw on w shows that y and w are correlated within taxa. If we find that 
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yw continues to change with w in the extreme high region but not in the extreme low region, we 

infer that the assumption of zero intra-taxon correlation holds for nonschizotypes but is violated 

by schizotypes. And of course if y covaries with w within either taxon, tail-values of yw are 

biased estimators of the latent mean for that taxon. 

If covw(xy) behaves in a satisfactory manner at both w-tails, and if yw  and xw  show zero 

slope within the same region, we have strong corroboration of the latent model, and trustworthy 

estimators of the latent means. Several consistency tests are immediately available by virtue of 

this situation. Example: The w-interval with yw-mean = 1
2
xs +

1
2
yn  should be the same as that 

with xw-mean = 1
2
xs +

1
2
xn , since each is the hitmax interval of w. Example: The w-interval for 

which yw =
1
2
ys +

1
2
yn  should correspond to that found by the other hitmax-locators. Example: 

The numerical value of covw(xy) at its maximum should agree with that calculable from the 

relation 

[108] covw xy( )Max =
1
4
xs − xn( ) ys − yn( )   

Example: By substituting the tail-estimated latent means xs , xn , ys , yn  in the formula 

[109] covt xy( ) = PQ xs − xn( ) ys − yn( )   

we should get the observed value of the grand covariance covt(xy). 

As always, some of the consistency tests might instead be employed as primary 

estimating procedures. E.g., in the last example above, once having concluded that our w-tail 

regions do provide good estimates of the latent means, we could use the grand covariance 

expression itself as a basis for getting the base-rate, solving the quadratic 

[110] p2 − p −
covt xy( )

xs − xn( ) ys − yn( ) = 0   

for P — assuming we have some basis for choosing between the two roots, e.g., which inequality 

P > Q or Q > P is compatible with the manifest-latent relations 

 yt = Pys +Qyn   

 xt = Pxs +Qxn   
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That the values involved in using the w-tails are not impracticable, so as, e.g., to demand 

an outlandish sample size, is suggested by the following simple numerical example. Suppose a 

2-sigma difference exists between the latent w-means of schizotypes and nonschizotypes, P = Q, 

and intra-taxon normality obtains. Then the hitmax cut is at +1σ below wn . At +1 P.E. of the 

schizotype distribution [= 75%ile] we are at +2.67σ on the nonschizotype distribution, above 

which point lie only .004 of that taxon’s cases. Hence the proportion of nonschizotypes in this 

“upper region” of w is, given the equal base-rates, only .004/.250 = .016 < 2 percent. Therefore 

the observed y -mean in that region is a weighted function of the latent means with weight = .98 

applied to the schizotypic mean, i.e., a quite accurate estimate of the desired latent mean ys . If 

our sample size were as small as N = 200, which is probably somewhat low for use of the whole 

approach, the yw -statistic is still fairly stable from the sampling standpoint, being based on 

approximately 25 schizotypes in the upper tail region of w. 

As to change in the taxon-purity over successive intervals in this region, a rough idea can 

be gleaned by considering the ordinates. At +2.67σ of the nonschizotypes’ curve, which 

corresponds to + .67σ [= 1 P.E.] on the schizotype curve, the ordinates are .011 and .319 

respectively, a ratio 

 .011
.319

= .034   

for taxon-mixture at that point (or, in an interval taken sufficiently small around that point). 

Moving up to 90th percentile on the schizotype curve, that is, to +1.29σ and +3.29σ on the two 

latent frequency functions, the corresponding ordinates are .1736 and .0018, a ratio of 

 .0018
.1736

= .010   

so the proportion of nonschizotypes has declined interval-by-interval from 3% to 1% over the 

region taken. These values seem reassuring as to the tail-method’s practicability with moderate-

to-large samples and decent luck with the latent distribution shapes. 
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d. Problem of a general proof that hitmax cut quasi-maximizes sum of hit-rates above and 

below cut 

There must, I think, be a less clumsy way to reach the result of Section 2b above, but I have 

been unsuccessful. A more mathematically adept reader may wish to try his hand at the problem 

in its general form, thus: Define 

[111] Ua = ha −
1
2
= H s

Na

− 1
2

  

[112] Ub = hb −
1
2
= Hn

Nb

− 1
2

  

Then the conditions are that 

[113] − 1
2
≤ Ua ≤

1
2

everywhere   

[114] − 1
2
≤ Ub ≤

1
2

everywhere   

[115] Ua > 0 if  Nb ≥ k   

[116] Ub > 0 if  Nb ≤ k   

if Nb = k is the cumulative manifest frequency up to the hitmax cut. Also we have 

[117] dUa

dNb

> 0 everywhere   

[118] dUb

dNb

< 0 everywhere   

[110] dNa

dNb

= −1 everywhere   

[120] 

dUa

dNa
dUb

dNb

= − Nb

Na

Ua

Ub

at Nb = k   

[121] d
dNb

UaNa +UbNb( ) = 0 at Nb = k   

[122] d 2

dNb
2 UaNa +UbNb( ) < 0 at Nb = k   

and, finally, 
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[123]  Na ≫ Ua   

[124]  Nb ≫ Ub   

in vicinity of Nb = k, by factors of 100 or more. (It may be that my difficulty arises from failure 

to include all of the actual conditions of the physical situation in the above statement of 

hypothesis). 

Then, to prove, that (Ua + Ub) has a maximum at Nb = k, or very close thereto. 

e. Possible use of sums of squares above and below cut as a good approximate hitmax locator 

In Section 2e above we raised the question whether an additional hitmax cut locator might be 

developed from the intuitive notion that when a cut on an “input” indicator minimizes the latent 

taxonomic misclassifications, the dispersions on an output indicator within groups above and 

below, should, in a general way, tend to be smaller than when the sub-sets above and below the 

cut are more “mixed” (i.e., when the cut is poorly chosen, so that many cases are misclassified). 

In Section 2e it was shown that the sum of sums of squares of an output indicator (about its 

means taken above and below a sliding input-indicator cut) is a minimum when the frequency-

weighted sum of hit-rates times their complements is a minimum; and that the input cut thus 

located is not, in general, exactly at hitmax. The present Section will make it plausible that the 

error in locating the hitmax cut in this way is likely to be small, at least for intra-taxon 

distributions departing not too grossly from normal. But since I have not tried out a wide range 

of distribution types as to numerical values, the proposed hitmax-locator is presented here among 

mere “Suggested further developments and queries.” 

We want to show that if sums of squares of deviations on an output-indicator y are computed 

about the y-means of cases falling above and below a sliding x-cut, the sum of these two sums of 

squared deviations will be a minimum when the x-cut is close to hitmax. (Re-read concluding 

portion of Section 2e before continuing.) “Close to hitmax” I take to mean “within the hitmax 

interval or, at worst, one interval displaced.” 

We define a function S(Nb) which is the cut-variable portion of the sum of sums of squared 

deviations of y about the y-means of cases falling above, and below, a sliding x-cut: 

[125] SSa +  SSb = H sσ s
2 + Nnσ n

2 + Δy 2 Naha 1− ha( ) + Nbhb 1− hb( )⎡⎣ ⎤⎦   

[126] S Nb( ) = Δy 2 Naha 1− ha( ) + Nbhb 1− hb( )⎡⎣ ⎤⎦   
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In what follows through Equaton [171], all derivatives are taken with respect to the 

cumulative frequency [= Nb] below the x-cut. The bracketed term in [126] expands as 

[127] b Nb( ) = Naha + Nbhb − Naha
2 − Nbhb

2   

and as pointed out in Section 2e above, the first two terms of this expression (= total hits) have 

zero derivative at hitmax, hence the derivative db/dNb will not, in general, vanish precisely at 

hitmax, since the subtracted portion Naha
2 + Nbhb

2( )  will not be minimized exactly where 

Naha + Nbhb( )  is maximized. The practical question is, then, “How far off is it?” It will be 

convenient to estimate this error in hitmax-location in terms of the cumulative frequency Nb, and 

an error Δ Nb < 10 is quite acceptable, since this would usually locate the correct class-interval, 

and would never err by more than one class-interval. The combined effect of errors due to (a) 

Unreliability, (b) Sampling, and (c) Grouping will very likely be greater than the error due to the 

present approximation. 

The first derivatives of the terms in [127] with respect to Nb are 

[128] d
dNb

Naha( ) = Na ′ha + ′Naha = Na ′ha − ha   

[129] d
dNb

Nbhb( ) = Nb ′hb + ′Nbhb = Nb ′hb + hb   

[130] d
dNb

Naha
2( ) = Na ha

2( )′ + ′Naha
2 = 2Naha ′ha − ha

2   

[131] d
dNb

Nbhb
2( ) = Nb hb

2( )′ + ′Nbhb
2 = 2Nbhb ′hb + hb

2   

The hit-rate derivatives which occur in these expressions are 

[132] ′ha =
d
dNb

H s

Na

⎛
⎝⎜

⎞
⎠⎟
= Na ′H s − H s ′Na

Na
2 = 1

Na

Na ′H s + H s

Na

⎛
⎝⎜

⎞
⎠⎟
= 1
Na

′H s + ha( )   

[133] ′hb =
d
dNb

Hn

Nb

⎛
⎝⎜

⎞
⎠⎟
= Nb ′Hn − Hn ′Nb

Nb
2 = 1

Nb

Nb ′Hn − Hn

Nb

⎛
⎝⎜

⎞
⎠⎟
= 1
Nb

′Hn − hb( )   

Substituting these hit-derivative expressions in [128]-[131] we obtain 

[134] Na ′ha − ha = ′H s   

[135] Nb ′hb + hb = ′Hn   
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[136] 2Naha ′ha − ha
2 = ha 2 ′H s + ha( )   

[137] 2Nbhb ′hb − hb
2 = hb 2 ′Hn − hb( )   

To minimize the sum of sums of squares we want the zero of its derivative, that is, 

[138] d
dNb

SSa + SSb( ) = 0   

which zeros the drivative of its cut-dependent portion S(Nb), so we want 

[139] ′S Nb( ) = Δy 2 Naha + Nbhb − Naha
2 − Nbhb

2⎡⎣ ⎤⎦
′ = 0   

Substituting the expressions [134]-[137] into the bracket, we obtain 

[140] ′S Nb( ) = Δy 2 ′H s + ′Hn − ha 2 ′H s + ha( )− hb 2 ′Hn − hb( )⎡⎣ ⎤⎦ = 0   

as the condition for minimizing (SSa + SSb). That this is a minimum rather than a maximum or 

flex-point is physically apparent, but can also be shown from the fact that Sʹ′ʹ′(Nb) > 0 in this 

vicinity. 

What is the value of this derivative at the hitmax cut? We would like it to be zero, so that 

(SSa + SSb) = Min could be employed as a hitmax cut locator. That this is not exactly true we see 

as follows: Re-arranging the bracketed portion of Sʹ′(Nb) 

[141] ′b Nb( ) = ′H s + ′Hn − ha 2 ′H s + ha( )− hb 2 ′Hn − hb( )  

 = ′H s 1− 2ha( ) + ′Hn 1− 2hb( ) + hb2 − ha2   

What is this at hitmax? Recalling that the frequency-functions intersect at hitmax (i.e., the 

ordinates are equal, and half of the area in a small interval surrounding hitmax cut is contributed 

by each taxon), we know that, at hitmax, 

[142] ′H s =
dH s

dNb

= − 1/ 2( )   

[143] ′Hn =
dHn

dNb

= + 1/ 2( )   

and substituting these into [141] we have, at hitmax, 

[144] ′b Nb( ) = − 1/ 2( ) 1− 2ha( ) + 1/ 2( ) 1− 2hb( ) + hb2 − ha2   

 = hb
2 − ha

2( ) + ha − hb( )   

 = hb
2 − ha

2( )− hb − ha( )   
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 = hb − ha( ) hb + ha( )− hb − ha( )   

[145] = hb − ha( ) hb + ha −1( )   

and putting this in terms of  

[146] Ua = ha −1/ 2   

[147] Ub = hb −1/ 2   

we have, at hitmax, 

[148] ′b (Nb ) = Ub −Ua( ) Ub +Ua( )   

[149] = Ub
2 −Ua

2( )   

So the first derivative of (SSa + SSb) at hitmax is 

[150] SSa + SSb( )′ = Δy 2 Ub
2 −Ua

2( ) ≠ 0  

which will be close to zero but not exactly zero in general, since it can be exactly zero only if 

there is perfect symmetry between the hit-rates above and below the cut, 

[151] Ua
2 = Ub

2   

[152] so Ua = Ub   

[153] so ha = hb   

which is, in general, false. In what follows we shall assume its falsity, permitting division by 

(Ua – Ub) at one step. If it should happen to be true in a particular empirical situation, the 

following evaluation of error ΔNb is not necessary, since the hitmax cut exactly minimizes 

(SSa + SSb) in that special case. Otherwise the value of (SSa + SSb)ʹ′ at hitmax is, of course, also 

the error in (SSa + SSb)ʹ′ at hitmax. 

We wish to evaluate the error made when one attempts to locate the hitmax cut by 

minimizing (SSa + SSb). That is, if a cut is located by empirically minimizing this statistic, how 

far will such a cut deviate from the hitmax cut? It is easier to look at this error from the other 

direction, i.e., if we were at hitmax and there calculated (SSa + SSb), how far “off” (in terms of 

cumulative frequency Nb) would we be from the cut that would exactly minimize (SSa + SSb)? 

That is, if (SSa + SSb)ʹ′ is not exactly zero at hitmax, how many more (or fewer) cases ΔNb would 

have to be cumulated to bring this derivative to zero? We approximate this by the differential, 
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[154] 
 
Error = ΔNb !

d 2 SSa + SSb( )
dNb

2 Δ SSa + SSb( )′   

and of course for present purposes the algebraic sign of this error is of no interest. 

Taking the second derivative of (SS + SSb) with respect to Nb, 

[155] SSa + SSb( )′′ = ′′S Nb( ) = Δy 2 Naha 1− ha( ) + Nbhb 1− hb( )⎡⎣ ⎤⎦
′′   

the bracketed (cut-variable) portion of this being, differentiating [141], 

[156] ′′b Nb( ) = d
dNb

′H s 1− 2ha( ) + ′Hn 1− 2hb( ) + hb2 − ha2⎡⎣ ⎤⎦   

 = ′H s 1− 2ha( )′ + ′′H s 1− 2ha( )− 2ha ′ha + ′Hn 1− 2hb( )′ + ′′Hn 1− 2hb( ) + 2hb ′hb   

 = ′H s −2 ′ha( ) + ′′H s 1− 2ha( )− 2ha ′ha + ′Hn −2 ′hb( ) + ′′Hn 1− 2hb( ) + 2hb ′hb   

 = ′H s − 2
Na

′H s + ha( )⎛
⎝⎜

⎞
⎠⎟
+ ′H s 1− 2ha( )− 2ha 1

Na

′H s + ha( )⎛
⎝⎜

⎞
⎠⎟

  

 + ′Hn − 2
Nb

′Hn − hb( )⎛
⎝⎜

⎞
⎠⎟
+ ′Hn 1− 2hb( ) + 2hb 1

Nb

′Hn + hb( )⎛
⎝⎜

⎞
⎠⎟

  

At hitmax, putting in the hitmax values 

 ′H s = − 1/ 2( )   

 ′Hn = + 1/ 2( )   

we obtain 

[157] ′′b Nb( ) = 1
Na

ha −1/ 2( ) + ′′H s 1− 2ha( )− 2 ha
Na

ha −1/ 2( )   

 + 1
Nb

hb −1/ 2( ) + ′′Hn 1− 2hb( )− 2 hb
Nb

hb −1/ 2( )   

 = 1
Na

ha −1/ 2( ) 1− 2ha( ) + 1
Nb

hb −1/ 2( ) 1− 2hb( )   

 + ′′H s 1− 2ha( ) + ′′Hn 1− 2hb( )   

[158] = 1− 2ha( ) 1
Na

ha −1/ 2( ) + ′′H s
⎡

⎣
⎢

⎤

⎦
⎥ + 1− 2hb( ) 1

Nb

hb −1/ 2( ) + ′′Hn
⎡

⎣
⎢

⎤

⎦
⎥   

which, reversing signs, dividing and multiplying by 2, and putting (U + 1/2) for the hit-rates, 

yields 
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[159] ′′b Nb( ) = −2 Ua
Ua

Na

+ ′′H ss
⎛
⎝⎜

⎞
⎠⎟
+Ub

Ub

Nb

+ ′′Hn
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥   

so at hitmax the second derivative of (SSa + SSb) with respect to the cumulative frequency is 

[160] d 2

dNb
2 SSa + SSb( ) = −2Δy 2 Ua

Ua

Na

+ ′′H s
⎛
⎝⎜

⎞
⎠⎟
+Ub

Ub

Nb

+ ′′Hn
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥   

 Lemma: The second derivatives ′′H s  and ′′Hn  of the hit-frequencies Hs and Hn with 

respect to cumulative frequency Nb are equal (everywhere, not only at hitmax), thus: 

[161] H s = H s −M s   

 = Ns − Nb − Hn( )   

 = Hn − Nb + Ns   

Differentiating with respect to Nb, 

[162] dH s

dNb

= dHn

dNb

−1  

Differentiating again with respect to Nb, 

[163] d 2H s

dNb
2 = d

dNb

dHn

dNb

⎛
⎝⎜

⎞
⎠⎟
= d

2Hn

dNb
2   

that is, we can everywhere make a substitution based upon the equality 

[164] ′′H s = ′′Hn   

Returning to the problem of estimating our error ΔNb in locating hitmax, the error in finding 

the zero of the first derivative is closely approximated by the differential 

[165]  Δ SSa + SSb( )′ ! SSa + SSb( )′′ ΔNb   

[166] 

 

ΔNb !
Δ SSa + SSb( )′
SSa + SSb( )′′

  

and substituting the error in the first derivative ≠  0 from [150] and the hitmax value of the 

second derivative from [160] we have 

[167] 

 

ΔNb !
Δy 2 Ub

2 −Ua
2( )

−2Δy 2 Ua
Ua

Na

+ ′′H s
⎛
⎝⎜

⎞
⎠⎟
+Ub

Ub

Nb

+ ′′Hn
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

  

Eq	  [159]	  …	  +	  Hs´´	  was	  
originally	  mis-‐typed	  as	  …+	  hs´´	  
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which, substituting ′′Hn  for ′′H s  and cancelling Δy 2  above and below, yields 

[168] 

 

ΔNb ! −
1
2

Ub
2 −Ua

2

Ua
2

Na

+Ua ′′Hn +
Ub
2

Nb

+Ub ′′Hn

  

[169] 

 

! − 1
2

Ub
2 −Ua

2

Ua
2

Na

+ Ub
2

Nb

⎛
⎝⎜

⎞
⎠⎟
+ ′′Hn Ua +Ub( )

  

First bracket of denominator is always positive, so neglecting this term will therefore lead to 

an overestimate of the absolute error ΔNb . We then have  

[170] ΔNb < 1
2

Ub +Ua( ) Ub −Ua( )
′′Hn Ua +Ub( )   

and cancelling (Ua + Ub) we get 

[171] ΔNb < 1
2

Ub −Ua( )
′′Hn

  

Thus, the error, in cumulative frequency below, in locating hitmax cut by minimizing (SSa + 

SSb) on an output variable, does not exceed half the difference between latent hit-rates below and 

above, divided by the second derivative of nonschizotypic hits with respect to the cumulative 

frequency Nb below the cut. 

To evaluate this error numerically we must express the second derivative ′′Hn =
d 2Hn

dNb
2  terms 

of the latent frequency functions fs(x), fn(x), and ft(x) = fs(x) + fn(x). It will be convenient to 

consider the derivatives of these unrelativized frequency functions taken with respect to the 

abscissa variable x instead of the cumulative frequency Nb. But of course what we are evaluating 

on the left is the second derivative of Hn taken with respect to Nb. The reader must remember that 

the prime-sign on the right-hand side of all equations following designates differentiations w.r.t. 

the input variable x itself. We have 

[172] d 2Hn

dNb
2 = d

dNb

dHn

dNb

⎛
⎝⎜

⎞
⎠⎟
= d

dx
dHn

dNb

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥
dx
dNb

Chain rule   

Expressing the inner parenthesis in terms of derivatives w.r.t. x, by Chain Rule we have 
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[173] dHn

dNb

= dHn

dx
dx
dNb

= fn x( ) dx
dNb

  

[174] = fn x( ) 1
dNb

dx

=
fn x( )
ft x( )   

Substituting [174] in [172] we obtain 

[175] d 2Hn

dNb
2 = d

dx
fn x( )
ft x( )

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥
dx
dNb

= d
dx

fn x( )
ft x( )

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥
1
ft x( )   

Since, everywhere, 

[176] dNb

dx
= ft x( )   

Differentiating [175] within the bracket, 

[177] d
dx

fn x( )
ft x( )

⎛
⎝⎜

⎞
⎠⎟
=
ft x( ) ′fn x( )− fn x( ) ′ft x( )

ft x( )⎡⎣ ⎤⎦
2   

and substituting [177] in [175] we obtain, for the second derivative of Hn with respect to Nb, 

everywhere, 

[178] d 2Hn

dNb
2 =

ft x( ) ′fn x( )− fn x( ) ′ft x( )
ft x( )⎡⎣ ⎤⎦

3   

remembering that the f’s on the right hand side are ordinates, and derivatives of ordinates, of the 

unrelativized latent frequency functions, taken with respect to x. Since 

[179] ft x( ) = fs x( ) + fn x( )   

everywhere, then 

[180] ′ft x( ) = ′fs x( ) + ′fn x( )   

everywhere, and substituting [179]-[180] in [178] we obtain 

[181] d 2Hn

dNb
2 =

fs x( ) ′fn x( ) + fn x( ) ′fn x( )− fn x( ) ′fs x( )− fn x( ) ′fn x( )
ft x( )⎡⎣ ⎤⎦

3   

and at hitmax cut, where fs(x) = fn(x), we substitute fn(x) for fs(x) in [181] to get 

[182] d 2Hn

dNb
2 =

fn x( ) ′fn x( )− ′fs x( )⎡⎣ ⎤⎦
ft x( )⎡⎣ ⎤⎦

3   

which, since ft(x) = 2fn(x) at hitmax, yields there the value 



	   	   52	  

[183] d 2Hn

dNb
2 =

fn x( ) ′fn x( )− ′fs x( )⎡⎣ ⎤⎦
8 fn x( )⎡⎣ ⎤⎦

3  

[184] =
′fn x( )− ′fs x( )
8 fn x( )⎡⎣ ⎤⎦

2   

Re-writing this as two fractions and substituting fs(x) for fn(x) in the second one, 

[185] d 2Hn

dNb
2 = 1

8
′fn x( )

fn x( )⎡⎣ ⎤⎦
2 −

′fs x( )
fs x( )⎡⎣ ⎤⎦

2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

  

Expressing the f ’s and their derivatives in terms of relativized frequency functions in 

accordance with the relations 

 [186] 

fs x( ) = Nsφs x( )
fn x( ) = Nnφn x( )
′fs x( ) = Ns ′φs x( )
′fn x( ) = Nn ′φn x( )

⎧

⎨
⎪
⎪

⎩
⎪
⎪

  

we have, at hitmax, 

[187] d 2Hn

dNb
2 = 1

8
1
Nn

′φn x( )
φn x( )⎡⎣ ⎤⎦

2 −
1
Ns

′φs x( )
φs x( )⎡⎣ ⎤⎦

2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

  

which is the denominator of [171] as far as it can be taken without plugging in numerical values. 

We write the unsigned error in cumulative frequency as 

[188] ΔNb < 1
2

Ub −Ua( )
1
8

1
Nn

′φn x( )
φn x( )⎡⎣ ⎤⎦

2 −
1
Ns

′φs x( )
φs x( )⎡⎣ ⎤⎦

2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

  

[189] <
4 hb − ha( )

1
Nn

′φn x( )
φn x( )⎡⎣ ⎤⎦

2 −
1
Ns

′φs x( )
φs x( )⎡⎣ ⎤⎦

2

 

at hitmax. 

Note that the denominator is not actually a difference, but a sum, of numerical values, 

because 

[190] ′φn x( ) < 0 to right of its mode   

[191] ′φs x( ) < 0 to left of its mode   

Eq	  [188]	  subscript	  mistyping:	  
denominator	  term	  1/Ns	  was	  
originally	  mis-‐typed	  as	  1/Nn	  
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so the first term of denominator is negative at hitmax, the second term positive (but to be 

subtracted), hence the numerical value of the denominator is a sum, 

[192] Denom = 1
Nn

′φn x( )
φn x( )⎡⎣ ⎤⎦

2 + 1
Ns

′φs x( )
φs x( )⎡⎣ ⎤⎦

2   

 I have not been able to simplify this further, or to prove any general statements about it 

useful for present purposes. To set a constraint on the error ΔNb one must plug in extreme 

numerical values of the hit-rates above and below, and evaluate the ratios of derivatives to 

squares of frequency functions. The behavior of this fraction when the intra-taxon distributions 

are normal is very reassuring. Thus, for example, at +1σ the ratio of the derivative ′φ x( )  of the 

ordinate to the square φ x( )⎡⎣ ⎤⎦
2

 of the ordinate is " 4.00, which with hit-rates as asymmetrical as 

ha = .80 and hb = .60 yields an error, if Ns = Nn = 100, of less than 10 cases, i.e., the cut would 

usually fall in the correct interval, and would never deviate by more than one interval from the 

correct one. What rough numerical trials I have done on very skewed distributions (e.g., on a 

chi-square distribution for 1 d.f.) are similarly reassuring. Pending thorough canvass of 

distribution forms in relation to base-rates and overlap, I opine with some confidence that 

minimizing (SSa + SSb) can serve as a pretty accurate hitmax locator. 

f. Possible use of covariances above and below cut as a good approximate hitmax cut 

locator. 

In the first method for hitmax cut location (PR-65-2, Section 3, and Section 1 of this report) 

we relied upon the fact that, given the assumption of zero (or equal) latent intra-taxon 

covariances between two indicators, their covariance within a sub-population is an increasing 

function of the latter’s “mixture” (heterogeneity, taxon impurity), i.e., the largest (xy)-covariance 

should be observed among cases lying in the w-interval where p (schizotypy) = 1/2 = 

p (nonschizotypy), therefore in the hitmax interval on w. This same line of reasoning should 

apply for sets of w-intervals, including the whole set lying above a w-cut and the set lying below. 

The slopes of the (xy)-regression lines within the two sub-populations defined by a sliding cut on 

input-variable w should have a tendency to increase when these sub-populations are more 

“mixed,” and to decline when they are relatively “pure.” Thus, for example, if the intra-taxon 

(xy)-correlation were strictly zero, and a w-cut could be found such that no latent taxon-
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misclassifications resulted from that cut, then the regression line of y on x would be horizontal 

for the Naw cases above wh (all being schizotypes), and the same would be true for the y-on-x 

regression line below the cut (all Nbw of these being nonschizotypes). And intuition generalizes 

from this idealized case of a hitmax-infallible “input” indicator to the general dependence of 

these two slopes upon the goodness-of-classification achieved by various input-indicator cuts. 

There should be some method of weighting-and-combining yx-slopes above and below a sliding 

w-cut, such that this function has a minimum at, or close to, the hitmax cut wh. 

In Section 2f above, as a corollary to the theorem concerning a latent expression for sums of 

squares on a single output indicator, we found further that when a pair of “output” indicators is 

studied, their frequency-weighted (xy)-covariances sum to a minimum when the latent condition  

[193] Naw cov xy( )aw + Nbw cov xy( )bw = Ns covs xy( ) + Nn covn xy( ) + ΔxΔy Na paqa + Nb pbqb( ) = MIN   

is satisfied. By reasoning strictly analogous to that of the just preceding sub-section 4f, where the 

variable quantity to be minimized, in minimizing (SSa + SSb) on a single output variable, was 

identical with the parenthetic quantity (Na pa qa + Nb pb qb) in [193], we conclude, as a corollary to 

the theorem of Section 4e, that one can closely approximate the hitmax cut on one indicator by 

finding the cut such that the sum of the two cross-product deviation sums above and below the 

cut, i.e., the left-hand side of Equation [193], has the minimum value empirically attainable. 

g. Some important unsettled questions 

I suspect that the reader who has stuck with it to this point is feeling rather like the little boy 

who returned a library book, saying, “Ma’am, this book tells more about penguins than I wanted 

to know.” Perhaps more time has been spent on these derivations than is warranted, pending a 

full-scale Monte Carlo study of the approach. All we have to go on is the Seth thesis (1965) and 

preliminary results on the single-indicator method. My justification lies in the fact that illness 

and financial problems slowed up a doctoral candidate’s progress on the full Monte Carlo job; 

but in the meantime scores of requests for PR-65-2, elicited by the cites in Dawes and Meehl 

(1966) and Hays (1968), have been responded to. I therefore felt it imperative to put out the 

present report, lest other workers waste time through ignorance of these more recent develop-

ments. Furthermore, trials of the method on diverse real-data problems, both psychological and 

biological, are perhaps more valuable at this stage than Monte Carlo runs. 
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Before expending further effort on mathematical features of the idealized latent model, we 

need to know four kinds of things about the overall approach, as I see it: 

(1) Size of random sampling errors in the estimators, as a function of base-rates, indicator 

validities, distribution shapes, ratio of their variances, and N. 

(2) Size and direction of systematic errors due to empirical departures from the idealization 

(e.g., discontinuity) and especially the unrealistic hypothesis of zero intra-taxon correlation 

(required in many of the derivations) or, at least, equal covariances between taxa (required in 

almost all). 

(3) Numerical values to be imposed upon the results of the various consistency tests, i.e., 

“how far off” can they be without impugning the idealization’s adequacy? 

(4) When the safe numerical limits on (3) are exceeded, and the iterative method is relied 

upon to “bootstraps” a closer approximation, does convergence (and satisfaction of consistency 

tests) assure us about the final estimates, or does the bootstrapsing sometimes converge, through 

circular reasoning or subtle dependencies, to a biased estimate showing pseudo-consistency? 

Answering these four kinds of questions would seem to have highest priority, but analytic 

solutions are far beyond my powers (and, I suspect, cannot be provided without a stronger 

model). If these issues can be settled in a satisfactory direction, it will then be time to investigate 

some less urgent but still important matters, such as the following: 

(5) Obviously a kind of symmetry exists between main estimators and what I have called 

“consistency tests,” in that the roles can usually (not always) be reversed. Thus, for example, we 

have in this report elevated a consistency test presented in PR-65-2 (Section 9c, the “Hitmax 

interval covariance test”) to a prime role as estimator of the constant K = ΔxΔy, which is then 

employed to draw the latent frequency functions (Section 1 of this report). There should be some 

rational or empirical basis for assigning one or the other role to a manifest-latent equation, 

especially when we have several multiple estimates available for the same parameter, and also 

more consistency tests than we need. 

(6) There are, presumably, differential sensitivities, among the consistency tests, to different 

departures from the idealization; and the same must be true of the alternative estimators. It seems 

plausible to suppose that the pattern of consistency-test “danger signals” might inform us as to 

which estimators should be relied upon in preference to others, in a particular real-data problem. 
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(7) Aside from the pattern of consistency tests (e.g., assuming they are all reasonably 

satisfied by a set of data) the several methods for estimating the same latent value are surely not 

equally informative. Thus we have, all told, some half-dozen hitmax cut locators (see PR-65-2, 

Sections 3 and 4; and in the present report, Sections 2a, 2b, 4e, and 4f). They differ considerably 

in how much of the total data each relies on, as well as probable intrinsic instability or 

“crudeness,” e.g., the equating of instantaneous slope and an interval statistic in the method of 

Section 2a is likely to be a rather touchy operation in comparison with the method of Section 2b. 

Which methods are best? Should the poorer ones be ignored, or relegated to the role of 

consistency tests, or what? 

(8) Should some, or all, of the latent values be estimated by pooling numerical results of the 

several methods? I take it that this is a question of the “sufficiency,” in Fisher’s sense, of the 

estimator, and therefore should be answerable analytically, if one has the mathematical 

competence. 

(9) Allied to the preceding query is the question of pooling the several numerical values 

arrived at via the same sub-method but employing different indicators (in the “input” and 

“output” roles). For example, the simplified sequence set out in Section 1 yields, among other 

things, a base-rate estimate. For any triad of three indicators (x, y, z) the method of Section 1 can 

be applied three ways, i.e., with x as “input” and the (y, z)-pair as output, with y as input and the 

(x, z)-pair as output, and with z as input and the (x, y)-pair as output. In a four-indicator family (x, 

y, z, w) there arise 3 × 4 = 12 such indicator-patterns for use with the simplified procedure, and 

hence we can obtain 12 numerical estimates of P, partially but not wholly overlapping as to data, 

and some of the sets being almost completely independent, e.g., (x, y)-pair against z as input, and 

(z, w)-pair against x as input. In a 5-indicator family there are entirely non-overlapping sets of 

data yielding estimates of P. Should all available P-estimates obtainable from an indicator-

family be averaged, weighted or unweighted, before re-cycling within each triad, or how should 

these values be optimally used? 

(10) Alternatively, can a more general system of latent-manifest equations be written 

including the whole set of k available indicators at once? 

(11) Can an “appearance of taxonomy” arise spuriously? If so, how? Can the consistency 

tests also be satisfied by such an unlucky pseudo-taxonomic situation? 
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(12) Since so many of the sub-routines involve maximum (or minimum) values, which in 

practice will be somewhat fuzzy due to errors of measurement, sampling, and grouping, some 

defensible graph-smoothing operation is in order. Thus, for example, location of the hitmax cut 

on w by finding the numerical maximum of cov(xy)w over the w-intervals can easily be distorted 

through a bad sampling fluctuation in one near-maximum class-interval, which might be avoided 

by considering the behavior of the cov(xy) function in the adjacent regions. It was apparent in 

Mr. Seth’s M.A. thesis research (Seth, 1965) that these problems would have to be dealt with 

somehow, even if nothing more rationally defensible than one of the well-known crude 

smoothing operations could be found to do the job. 
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