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I.  Introduction 
Previous contributions to this research report series (Meehl, 1965 and Meehl, 1968) provided 

the basis of several different interrelated methods for the estimation of a large variety of 

parameters concerning a dichotomous latent taxonomy. However, there are two distinctly 

different major assumptions strongly relied upon in this work: (a) the covariance between two 

indicators within the taxon and within its complementary extra-taxon class is zero (maximum 

covariance method) and (b) each single indicator distribution within the taxon and the extra-
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taxon class is normal (normal method). Many other results developed by Meehl can be used in 

conjunction with either of these two different general methods.  It will be indicated below that 

the present trial illustrates how these two methods, although intuitively quite different in 

rationale, can be used as checks on each other when used with indicators such as MMPI keys. 

The term “method” as used here can be regarded as equivalent to “model” or “theory.” The 

term “assumption” is used in the usual sense in that it can be stated exactly in mathematical 

formulation and while it is never strictly true for any natural phenomena it cannot be directly 

tested by the present data. It is only necessary that an assumption be approximately true, the 

closeness of the approximation required being determined by whatever the substantive problem 

requires in terms of accuracy of parameter estimation and major hypothesis testing such as “Is 

there one taxon plus the extra-taxon class?” 

This report gives the results of an empirical trial of each of the two major methods and 

certain other results developed by Meehl. The raw data consisted of 1105 patients’ MMPI item 

responses. Three twenty-item MMPI keys were developed so as to discriminate fairly well 

between the sexes and were used as three candidate taxonomic indicators, the purported 

taxonomy being that of biological sex. As was mentioned in a previous report of a male-female 

empirical trial of the normal method (Meehl et al., 1969) biological sex is one of the few true 

taxonomies that can provide good psychometric data for an empirical test of a taxometric 

method. This is because the determination of biological sex is completely objective and many 

personality measures have distributions which are bimodal or nearly so for mixed-sex samples. 

II.  Development of Keys 
While the normal method requires only a single indicator such as scale 5 of the MMPI 

(which was, in fact, used in the report referred to above), the maximum covariance method 

requires three or more indicators. A first attempt at key development started with factor analyses 

(varimax solution) of the sixty items in scale 5 for the male sample, the female sample and the 

mixed sample. The three factor analyses each produced similar sets of four different factors, each 

accounting for 10-15% of the common variance and each being easily identified and matched 

with a factor from each of the other two analyses by similar patterns of the highest ten item 

loadings. The finding of similar factor structure within the sexes is of substantive significance; 

however, the factor scales could not be used for the purpose of this study since it was found that 
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while they possessed ample internal consistency “reliability” so as to be easily identified 

(especially the first two factors which were clearly “masculine interests” and “feminine 

interests”) none discriminated adequately between the sexes. Key lengths of ten and twenty items 

both produced mean separations of about one standard deviation on each of the four scales. A 

Monte Carlo study (Golden and Meehl, 1973) shows that under otherwise optimal conditions, 

such a separation is too small for accurate taxonomic detection by the maximum covariance 

method. Other studies have indicated that about a two standard deviation separation is required 

for the normal method (Hasselblad, 1966; Hald, 1952). In short, the item selection by factor 

analysis produced keys that were too homogeneous in that homogeneity was obtained at the 

expense of discriminative power. This result can be explained in some mathematical detail as 

follows. Let the following notation be used: 

Δi: the item plus-rate proportion for the females less that for the males, 

σif: the item variance for the females, 

σim: the item variance for males, and 

σij: the within sex covariance (for simplicity, assumed here to be the same for each sex) 

where i = 1, 2, 3, . . ., n (the number of items).  If it is assumed (for simplicity here) that 

   
for a set of n items comprising a key (with unit weights), then the difference in the male and 

female key means in terms of the common within sex standard deviation can be shown to be 
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Thus if keys are desired to discriminate maximally it is required that an item i be selected such 

that Δi is large and the σij are small. That is, the best item for a key should not only be maximally 

discriminative itself, but also it should have minimal covariances with other items in the key. 

Factor analysis produces keys that have high interitem covariation within the sexes. 
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TABLE 1 
Descriptive statistics for the male and female 

sample distributions on the three keys 

 male female 

frequency 430 675 
proportion 

(base-rate) .389 .611 

key mean SD mean SD 

1 9.57 2.53 14.10 2.53 
2 7.31 2.47 11.68 2.47 
3 8.60 2.53 12.84 2.53 

 correlations correlations 
 

key/ 1 2 3 
1    
2 .27   
3 .53 .33  

 

key/ 1 2 3 
1    
2 .33   
3 .53 .35  

 

 
covariances covariances 

 
key/ 1 2 3 

1    
2 1.67   
3 3.45 2.08  

 

 

key/ 1 2 3 
1    
2 2.03   
3 3.37 2.18  

 

Adequately discriminative keys were produced by selecting from the total pool of 550 

items the set of 60 most discriminative in terms of the plus-rate difference between the sexes, 

ordering the 60 items from most to least discriminative, and assigning every third one to each of 

three keys so as to make each key approximately equally discriminative. As a further precaution, 

items with high covariances within a key were reassigned to another key if this resulted in lower 

covariance contribution by the item to the latter key. In short, a non-optimal crude “guess and 

hope” method which considered both the Δi’s and the σij’s was used to develop the three twenty-

item keys. See Table 1 for the basic descriptive statistics of the resulting keys which were used 

as the real data in the main portion of this study.  It should be noted that the mean separations are 

slightly less than the desired two-sigma difference and, therefore, provide for a moderately tough 

empirical trial of the two methods. 
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III. Maximum Covariance Method 
The method is given in Section 1, pp. 2-7 of PR-68-4 as a revision of the original method 

given in Section 3, pp. 10-12 of PR-65-2. An outline of the method is given below. 

A. Let w, x, and y be three indicators such that w is the input indicator and x and y are the output 

indicators. The latent taxa distributions on the input indicator are estimated by use of 

manifest relationships between the two output variables. “Output” and “input” refer to 

statistical manipulations and have no psychological-causal connotation. 

B. The covariance between x and y for cases lying within any interval of w is given by 

   [1] 
 where 

  pw  is the proportion of individuals in w interval that are females,  

  qw  is the corresponding male proportion (pw + qw =1), 

 covfw(x,y)  is the manifest conditional covariance between x and y for the females 

 in interval w,  

  covmw(x,y) is the corresponding male covariance,  

   is the mean on x for the females in interval w less that for the males, and  

   is the corresponding mean difference on y.  

C. Under the assumptions 

  A1:  (a constant) for all w, and 

  A2:  covfw(x,y) = covmw(x,y) for all w,  

 it follows that max{covw(x,y)} occurs in the hitmax interval (where pw = qw = 1/2 and the 

frequency distributions intersect) and is equal to the latent quantity . 

D. Under a further extension of assumption A2 

  A3:  covfw(x,y) = covmw(x,y) = 0 for all w  

 it follows that 

   [2] 

   

 a quadratic with pw and qw as the two roots.  In other words, the latent frequency distributions 

on w for each taxon are now estimated. From these, the latent taxa means, standard 

covw x, y( ) = pw covfw x, y( ) + qw covmw x, y( ) + pwqwΔxwΔyw

Δxw

Δyw

ΔxwΔyw = K

1
4ΔxwΔyw = 1

4K

pw
2 − pw +

covw x, y( )
max covw x, y( ){ } = 0
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deviations, base-rates and any other distribution parameters are estimated. 

E. With three indicators, the roles of input and output can be interchanged to produce three 

different arrangements as shown below. 

input indicator output indicators 

key 1 key 2, key 3 

key 2 key 1, key 3 

key 3 key 1, key 2 

 

IV. Maximum Covariance Method Results 
The observed and estimated taxa frequency distributions and the corresponding descriptive 

statistics for each of the three arrangements are given in Tables 2, 3, and 4. A perusal of these 

tables shows that there is considerable agreement between the actual and estimated frequencies. 

Usual tests of significance for comparing the actual and estimated frequency distributions are not 

strictly appropriate since population values are not known. However, if the model parameter 

estimates are considered as approximations of the true population values, then it is possible to 

check as to whether the observed values differ more than that for which sampling error would 

allow. Tests of goodness of fit between the expected (estimated) and observed distributions by 

the usual χ2 test produced the following results. 

 

χ2 tests of goodness of fit of the within taxa frequency distributions 

when estimated by the maximum covariance method 

males females 

 χ2 d.f

. 

P χ2 d.f. P 

key  1 83.7 16 <.01 34.7 16 <.01 

key 2 95.5 16 <.01 66.5 16 <.01 

key 3 94.2 14 <.01 143.8 15 <.01 
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TABLE 2 

The observed and estimated (by the maximum covariance method) 
taxa frequency distributions for key 1 

 male  female 

score observed estimated  observed estimated 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 

 17 

 18 

 19 

 20 

 3 3 

 11 10 

 8 7 

 32 34 

 41 39 

 50 46 

 58 66 

 60 71 

 65 76 

 53 58 

 29 8 

 10 15 

 7 18 

 2 13 

 1 3 

 0 2 

 0 2 

 0 0 

  0 0 

 0 1 

 0 1 

 3 1 

 5 7 

 9 13 

 20 12 

 30 19 

 27 16 

 62 57 

 93 114 

 110 105 

 103 92 

 107 96 

 61 59 

 28 26 

 14 12 

 3 3 

base-rate 

mean 

SD 

 .389 .426 

 9.57 9.94 

 2.55 2.84 

  .611  .574 

 14.10  14.12 

 2.56  2.50 
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TABLE 3 

The observed and estimated (by the maximum covariance method) 
taxa frequency distributions for key 2 

 male  female 

score observed estimated  observed estimated 

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 

 17 

 18 

 19 

 1 1 

 7 7 

 13 9 

 33 26 

 48 36 

 63 44 

 67 61 

 62 59 

 59 59 

 36 29 

 22 52 

 11 26 

 6 32 

 1 18 

 0 5 

 1 10 

 0 1 

 0 0 

 0 0 

  0 0 

 0 0 

 0 4 

 3 10 

 3 15 

 13 32 

 17 23 

 27 30 

 59 59 

 87 94 

 110 80 

 97 82 

 91 65 

 83 66 

 51 46 

 26 17 

 5 4 

 2 2 

 1 1 

base-rate 

mean 

SD 

 .389 .430 

 7.31 8.66 

 2.42 3.17 

  .611  .570 

 11.68  10.97 

 2.47  2.94 
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TABLE 4 

The observed and estimated (by the maximum covariance method) 
taxa frequency distributions for key 3 

 male  female 

score observed estimated  observed estimated 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 

 17 

 18 

 19 

 4 4 

 3 3 

 12 11 

 26 24 

 54 53 

 53 60 

 57 64 

 71 92 

 46 58 

 43 13 

 31 22 

 17 14 

 9 23 

 4 4 

 0 3 

 0 0 

 0 0 

 0 0 

  0 0 

 0 0 

 0 1 

 2 4 

 3 4 

 8 1 

 16 9 

 27 6 

 69 57 

 83 113 

 91 100 

 93 96 

 109 95 

 71 71 

 56 53 

 27 27 

 15 15 

 5 5 

base-rate 

mean 

SD 

 .389 .405 

 8.60 8.61 

 2.57 2.62 

  .611  .595 

 12.48  12.95 

 2.53  2.40 
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Although non-significant results are a desirable outcome they are not necessary for 

acceptance of the model. It is clear simply by “armchair inspection” that the parameter estimates 

are accurate enough for any applied or theoretical work in the area of personality measurement. 

(Physicists and chemists often proceed thus; why shouldn’t psychologists?)  It might be noted 

that here we have an example of one of the many differences between hypothesis testing and 

parameter estimation. A model need not fit the data perfectly as an H0 test would require given 

unit power. It only is required that the important parameters be estimated with an adequate 

degree of accuracy. In the present trial, 90%+ accuracy would seem to be adequate in the 

estimation of the various means, variances and base-rates.  

 (% accuracy = ) 

Inspection of Tables 2, 3, and 4 show the observed hit-max intervals for keys 1, 2, and 3 to 

be 12, 9, and 10. The manifest covariance functions between the pairs of output variables are 

given in Table 5 and it is seen that the corresponding maximum covariances occur in intervals 

12, 9, and 10; thus in perfect agreement. 

It should be noted that the sampling irregularities of the output covariance functions do 

indicate that some sort of curve smoothing will be desirable in other empirical investigations. 

V. Prediction of Biological Sex Using  

Maximum Covariance Parameter Estimates 
Strengthening the assumptions A2 and A3 further to  

A4: The indicators are independent in the strongest sense within taxa  

will allow for classification of individuals. That is, for any three intervals w, x, and y on the three 

keys 1, 2, and 3, the density (the proportion of the individuals in the taxon with the scores w, x, 

and y) φ(w, x ,y) is equal to φ1(w) φ2(x) φ3(y) where, for example, φ1(w) is the taxon density for 

score w on key 1. 

  

observed value −  estimated value
observed value

×100
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TABLE 5 

The mixed group manifest covariance function between 
output indicators for each of the three input indicators 

 input indicator 

score key 1 key 2 key 3 

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 

 17 

 18 

 19 

 20 

— 

— 

–0.22 

1.48 

2.56 

0.78  

2.08 

2.66 

1.95 

2.51 

2.12 

3.68 

0.83 

1.59 

1.97 

1.45 

0.64 

0.61 

0.99 

–1.33 

0.00 

–0.53 

4.27 

3.91 

3.94 

4.54 

3.71 

4.18 

4.62 

3.32 

4.39 

3.37 

4.02 

2.99 

1.43 

4.14 

0.68 

–0.50 

0.00 

— 

— 

1.50 

 0.00 

1.69 

1.98 

1.18 

0.28 

1.76 

0.94 

3.98 

1.40 

2.31 

1.75 

2.43 

0.80 

0.56 

–0.06 

–0.96 

–0.88 

— 

total 6.55 7.98  6.58  
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Then the probability that an individual is a female given a vector of key scores (w, x, y) is 

 
Pr female |w, x, y( ) = Pφf

Pφf +Qφm   

 =
Pφfw1φfx2φfy3

Pφfw1φfx2φfy3 +Qφmw1φmx2φmy3
  

where  φ 

P  is the base-rate for females, 

Q  (=1 – P) is the base-rate for males, 

φf  = φ(w, x, y) for the females, 

φm  = φ(w, x, y) for the males, and 

φfw1  = the female density function value for interval w indicator 1, for example.  

Then if the total misclassification rate is to be minimized it can be shown that the required 

classification rule is 

“Classify as female if Pr (female|w, x, y) > .5, and classify as male otherwise.” 

The base-rate was estimated for each of the three keys giving close but, of course, somewhat 

different results. For use in the classification formula the simple arithmetic average of the three 

estimates was used. The estimated taxon density functions were determined directly from the 

corresponding estimated frequency functions. The predicted sex can then be compared with the 

actual sex in the form of a hits-misses table as given below.  

  Biological sex 

 male female total 
predicted sex    

male  333  68  401 

female  97  607  704 

total  430  675  1105 

The valid female rate, valid male rate and overall hit-rate were .86, .83, and .85 respectively. The 

proportion of the predictions which were “female” was .64. Comparison of the three hit-rates of 

the two methods and the general patterns of the hits-misses tables indicates that for the present 

empirical trial the interval proportions method has only a very slight edge in accuracy. 
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VI. Direct Estimation of Base-Rate P 
In PR-68-4, pp. 24-26, it is suggested that the base-rate P can also be estimated (for 

consistency testing) by solving the covariance mixture equation when written for the total 

compound sample (not for a w interval of the input variable as was done in equation [l]): 

 cov x, y( ) = Pcovf x, y( ) +Qcovm x, y( ) + PQΔxΔy   [3] 
where 

P is the base-rate of the females, 

Q is the base-rate of the males, 

cov(x,y) is the covariance between x and y for the total group, 

covf (x,y) is the manifest covariance between x and y for the females, 

covm (x,y) is the corresponding male covariance, 

Δx  is the mean on x for the females less that for the males, 

 and 

Δy  is the corresponding mean difference on y. 

If we assume that  

 A5: covf (x,y) = covm (x,y) =0 

Then [3] becomes 

 cov x, y( ) = PQΔxΔy   

or P = 1
2
± 1

4 −
cov x, y( )
ΔxΔy

  [4] 

Since cov(x,y) is directly observable and under A1 Δx Δy  can be estimated from the hitmax 

interval data, for example, [4] provides another method to estimate P. For example, using key 2 

and key 3 as output variables x and y, we find 

 cov x, y( )
ΔxΔy

= 5.37
10.97 − 8.66( ) 12.95 − 8.61( ) = .535 . 

Since this quantity is greater than 1/4, equation [4] gives imaginary values for P. Thus, if 

sampling error cannot explain this result then the conjunction A1 and A5 if false. From the actual 

male-female sample statistics given in the Appendix it can be seen that while A1 is 

approximately true, A5 is blatantly incorrect for the present data. Pending further study it appears 

that A5 is too strong to make this a useful consistency test. 
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VII. Two Different Assumptions of Zero Within Taxa Covariance 
It was shown above that the within interval (of the input variable) covariances can be 

assumed to be zero (assumption A2) in the context of the maximum covariance method without 

giving rise to serious errors in the parameter estimation (the within taxa indicator frequency 

distributions, the taxa base-rates, and the taxon membership of each individual). The present data 

(see Appendix) then illustrate that assumptions A2 and A5 are not equivalent; further, 

examination of special cases such as the one of Figure 1 shows geometrically that the 

assumptions are not equivalent. Further clarification of the relationship between the two 

assumptions can be obtained by writing the covariance mixture equation for two input variable 

intervals wi and wi′ for just one of the taxa, say, the females 

 covfwi+w ′i
x, y( ) = Pwi covfwi x, y( ) + Pw ′i

covfw ′i
x, y( ) + Pwiw ′i

Δxwi ′i Δywi ′i   

where 

covfwi+w ′i
x, y( ) is the covariance between x and y for the females in wi and wi′, 

Pwi  is the proportion of the females in wi and wi′ which are in wi′, 

Pw ′i
 is the corresponding proportion for wi′ (= 1 – Pwi ), 

covfwi x, y( )  is the covariance between x and y for the females in wi , 

covfw ′i
x, y( )  is the corresponding covariance for wi′, 

Δxwi ′i  is the mean on x of the females in wi less that for the females in wi′, and 

Δywi ′i  is the corresponding mean difference on y.  

Under A2, covfwi x, y( )  = covfwi x, y( )  = 0 and it follows that covfwi+w ′i
x, y( ) = Pwiw ′i

Δxfwi ′i Δyfwi ′i . 

Thus it is seen that covfwi+w ′i
x, y( )  is zero if and only if Δxfwi ′i  = 0 and/or Δyfwi ′i  = 0. The latter 

condition can be written as xfwi = xfw ′i
 and/or yfwi = yfw ′i

.  It can be shown by the method of 

mathematical induction then that for n input variable intervals w1, w2, w3, . . ., wn, 

covfwi x, y( ) = covf x, y( ) = 0  if xfwi = xf  and/or yfwi = yf  for all i. Thus the further condition 

required for A5 to follow from A2 can be given in words as “the within taxa regression curve of x 

on w or y on w is a line of zero slope.” That this is not the case for the present data can be seen 

simply by inspection (see Appendix). All of the within taxa regression lines have large positive 

slopes. For example, the means on key 2 for the females in intervals 6-20 of key 1 go steadily up 
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from 7.7 to 12.0. With such steeply sloping regression lines it is not difficult to see that the 

method of direct estimation of the base-rate would lack adequate robustness with respect to 

assumption A5. For the simplified maximum covariance method to provide adequately accurate 

parameter estimation there must be sufficient robustness with respect to A2. 

 
Perusal of the within taxa covariances as functions of input variable values (see Appendix) 

shows that they are somewhat positive, rather irregular (evidently due to sampling error) and 

without any other discernible properties. As a typical example, the covariances between key 2 

and key 3 for the females in intervals 6-20 of key 1 are  –1.7, 3.2, .1, 3.2, 1.4, .1, 1.4, .0, 1.1, 1.5, 
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1.5, .7, .6, 1.0, and –1.3.  It is not clear to the eye that these values are sufficiently close to zero 

as required by A2; however, in view of the final parameter estimates of the maximum covariance 

method it is concluded that the method has adequate robustness with respect to A2 to tolerate 

such deviations. 

VIII. Estimation of the Hitmax Cut by Using the Output Variable 

 Mean Above Less That Below a Sliding Cut on the Input Variable 
In PR-68-4, Section 2, part b (pp. 9-24) it is suggested that the mean on the output variable y 

for those individuals in the mixed distribution with a score on the input variable greater than x, 

yax , less that for below x, ybx , has a maximum approximately at the hitmax cut. As the results in 

Table 6 show, the method did not correctly locate the hitmax cuts with the possible exception of 

example A. The other input/output combination examples not given in Table 6 are similar to 

examples B and C. One source of error was clearly that of sampling and a fair test of the method 

should use some curve smoothing procedure. The sampling variance ydx = yax − ybx  is given by 

 var ydx( ) = var yax( )
Nax

+
var ybx( )
Nbx

. 

As the x cut goes further into either tail of the mixed distribution, Nax or Nbx becomes smaller and 

var ydx( )  becomes larger. Examination of example A shows the method worked fairly well if one 

considers only the relative maximum and if small differences in contiguous values such as .02 is 

enough for stability of the sign of the derivative with respect to x. For the latter condition to be 

even roughly met it is necessary, it would seem, that var ydx( )  be less than .2. With this 

requirement and estimates of var yax( )  and var ybx( )  the minimum allowable size of Na or Nb can 

be determined. Let Na be the smaller of the two so that the right hand tail is nearly all females. 

The within sex variances are about (2.5)2 = 6.25, so var ya( )= 6.25. The mixed group variances 

are about 3.3, so var yb( ) = 10.98.  If Na + Nb = 1000, then it follows that Na should be greater 

than 100. Also, it is seen that min{SD( ydx )} is greater than 2.5( )2

500
+
2.5( )2

500
= .16 . Thus it is 

difficult to trust the appearances of a relative maximum near hitmax in example A to the extent 

of having confidence that replication would produce a similar result. 
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TABLE 6 

Examples of the mean above less the mean below on output  

variable y as a function of the input variable interval value x 

input variable (x)
output variable (y)

 key 1
key 2

  key 2
key 1

 key 3
key 1

 

input variable 
interval value 

yax − ybx   

 0 

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 

 17 

 18 

 19 

 20 

—* 

— 

— 

— 

— 

— 

—  

— 

— 

3.470 

3.440 

3.384 

3.404 

3.392 

3.445 

3.227 

3.063 

2.805 

— 

— 

— 

— 

— 

— 

— 

— 

4.207 

3.968 

3.856 

3.801 

3.581 

3.341 

3.340 

3.143 

2.947 

2.889 

— 

— 

— 

— 

— 

— 

— 

— 

— 

 — 

— 

— 

— 

4.613 

4.636 

0.390 

3.970 

3.877 

3.715 

3.521 

3.409 

3.211 

— 

— 

— 

— 

— 

*Values for intervals with mixed distribution tail frequencies less than 100 are omitted. 
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The main source of error is clearly that of not approximately meeting the assumption that the 

within-taxa within-interval output means are constant which is the key assumption in the quasi-

derivation of the result (see equations 12 and 13, PR-68-4). Monte Carlo study has shown that 

the method does work quite well when the within-taxa within-interval output means are constant 

(these results will be given in a forthcoming research report) and the lack of a precisely 

developed mathematical demonstration that max( ydx ) approximates the hitmax is not something 

of concern in view of the failure of the method with the present data. 

The present results do suggest an interesting possibility to be investigated by Monte Carlo 

study in that the absence of any local maximum and the presence of monotonicity of the ydx  

function might be a good indicator of failure to meet assumption A5. Thus if the two above 

methods of estimation of the base-rates (section IIIb and V) give discrepant results, as is the case 

for the present data, the ydx  function could be used to check the validity of assumption A5.  

IX. Estimation of the Hitmax Cut by Using the  

Maximum of the Sum of the Latent Hit-Rates 
In PR-68-4, pp. 14-24, it is argued that the sum of the latent hit-rates has a maximum at 

hitmax. First we can inquire if this is true for the male and female sample distributions on each 

key. The result is that the quantity has vaguely defined relative maxima at 11, 8, and 9 on keys 1, 

2, and 3 respectively; these values correspond well with the true hitmax cuts of 12, 9, and 10. 

Second, we can inquire if this is true for the maximum covariance method estimated taxa 

distributions on each key. The result is that the quantity has nicely defined relative maxima at 11, 

10, and 11 on keys 1, 2, and 3 respectively which also correspond well with the true values. 

X. Estimation of the Hitmax Cut by a Relation Between the  

Manifest Frequencies Above and Below Hitmax Cut  

and the Latent Hit-Rates 

In PR-68-4, section 2, part d, op. 26-31, it is shown that Uax

Ubx

− Nax

Nbx

 (where Uax is the 

proportion of the individuals above x that belong to the upper group less one-half, Nax is the total 
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number of individuals with scores greater than x, and Ubx and Nbx are defined similarly) has a 

minimum and is approximately zero at hitmax. Using the male and female sample distributions, 

the hitmax estimates are 11, 9, and 10 which compare well with the true values of 12, 9, and 10 

and the same results are obtained using the maximum covariance method estimated frequency 

distributions. The graph of Uax

Ubx

− Nax

Nbx

 in each case has a very nicely defined minimum value 

between 0 and 1 in each case.  It should be noted that these minimum points are considerably 

more discernible than the maximum of the sum of the hit-rates and, therefore, this method might 

prove to be of more general value than the latter one. 

XI. Estimation of Parameter Estimate Error  

in the Maximum Covariance Method 
In section III above, [1] is solved for pw, the proportion in the interval w which are females, 

for each value of w by making certain simplifying assumptions. From [l] it is clear that the error 

in the pw estimate is due to errors in Cfw = covfw(x,y), Cmw = covmw(x,y), and kw = ΔxwΔyw . 

Ignoring sampling error, covfw(x,y) and covmw(x,y) are in error because of assumption A3, and kw 

is in error because of assumptions A1 and A2. Denoting the error in the dependent pw variable by 

Δpw and the errors in the independent variables by ΔCfw, ΔCmw, and Δkw, the exact differential of 

pw is given by 

 dpw =
∂pw
∂kw

dkw +
∂pw
∂Cfw

dCfw +
∂pw
∂Cmw

dCmw +   

 

from which we obtain the (approximate) relationship between the errors 

 

 
dpw !

∂pw
∂Cfw

ΔCfw +
∂pw
∂Cmw

ΔCmw +
∂pw
∂kw

Δkw   [5] 

 

By implicit differentiation of [1], we obtain 

 
∂pw
∂Cfw

= pw
dw

  

 
∂pw
∂Cmw

= 1− pw
dw

,  and 
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∂pw
∂kw

= pwqw
dw

,  where 

   dw = pw − qw( )kw +Cfw −Cmw   
 

and substitution into [5] gives 

 

  
Δpw =

pwΔCfw + 1− pw( )Cmw + pwqwΔkw
⎡⎣ ⎤⎦

dw

 [6] 

Using the convention that the estimate of parameter θ, denoted by  θ̂ , is given by  θ̂ = θ + Δθ

we have ΔCfw = –Cfw and ΔCmw = –Cmw because of assumption A3, and 

  
Δkw = 4max Cw{ }− Cw

pwqw

+
Cfw

qw

+
Cmw

pw

 because of assumptions A1 and A2. From [6] we then 

have 

 
  
Δpw =

4 pwqw max Cw{ }−Cw

pwqw( )kw +Cmw −Cfw

 [7] 

  

The resulting error in the overall base-rate ΔP is 
 

Δpwφw
w
∑  where φw is the mixed group density 

for interval w. Substitution of the method produced estimates for the parameters in [7] should 

yield sufficiently small values for Δpw and Δp. The maximum covariance method produces 

estimates of all parameters except Cfw and Cmw; hence, it will be assumed that Cfw – Cmw = 0. The 

resulting values of Δpwφw for each interval of each key of the present data are never greater than 

.002 and are usually less than .001, and the values for Δp for keys 1, 2, and 3 are .009, .009 and 

.027 respectively, which are all sufficiently small. Also, it can be shown that |Cfw – Cmw| can be 

as large as 1 or 2, which is considerably larger than the true differences, without markedly 

changing the Δpwφw and the Δp. 

The result given in [7] can be considered as another consistency test. Under both of the 

conditions: (a) Cmw – Cfw = 0, and (b) |Cfw – Cmw|  is of maximum size as estimated by some 

method, the resulting Δpfw and Δp should be sufficiently small. However, it is presumably 

possible that the maximum covariance method could produce parameter estimates which are 

grossly in error yet do not yield large Δpfw and Δp values.  It is only suggested that if the 
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assumptions are adequately satisfied then the Δpfw and Δp should be sufficiently small; if in a 

particular application they are not, then it is suggested that the model is not adequate in that 

instance. 

XII.  Iterative Generalization of the Maximum Covariance Method 
In PR-68-4, pp. 54-58 it is suggested that after the procedure of section III above the 

following procedure could be used to relax the within taxa covariance assumptions A2 and A3. 

For each indicator: 

1. Estimate  k = ΔxΔy  from the estimates of the latent means of the output variables. 

2. Under the assumptions 

A5:  covfw(x,y) = Cf  and  covmw(x,y) = Cm  for all w, and 

 A6:    xfw = xf , yfw = yf , xmw = xm , ymw = ym  for all w 

it can be shown by the method of mathematical induction that if we consider the two mixed 

samples above and below some cut, say the median, on the input variable then 

 covaw(x,y) = PfaCf + PmaCm + PfaPmak,  and 
[8] 

 covbw(x,y) = PfbCf + PmbCm + PfbPmbk, 

where 

covaw(x,y) is the manifest covariance of the mixed group above the cut,  

covbw(x,y) is the corresponding covariance of the mixed group below the cut, 

Pfa is the proportion of those above the cut which are females, and 

Pma, Pfb, Pmb are defined similarly. 

All quantities in [8] can be estimated directly from the results of section III except Cf and Cm and 

we have then two independent equations which can be solved simultaneously for these two 

unknowns. 

It might be suspected right off that this method would not work well for the present data 

since it has already been shown that A6 is grossly incorrect. However, there occurs a more 

serious error in the estimation of k. The k estimated from the mean estimates is considerably too 

small; that is, the taxa means are estimated to be too close together. When k is estimated by 

4max{cov} it is also too small but considerably more accurate. (See table below.) 
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input variable 
true sample  
value of k* 

4max{cov} 
hitmax estimate of  

taxa means 
estimate of k 

key 1 15.70 14.75 6.05 

key 2 19.61 17.60 7.19 

key 3 19.50 15.95 13.74 
*by using the male and female sample values 

 

The hitmax estimate of k is, of course, larger than the value obtained when the hitmax interval 

male and female means are used, because the within sex-within hitmax interval covariances of 

equation [l] are positive.  In any event, solution of equation [1] for Pfw works well when hitmax 

estimate is used for k but not well at all when the estimate from the mean estimates is used. The 

covariances obtained by solution of [8] using the revised estimates of k were usually negative or 

less accurate than the value zero; however those obtained by using the hitmax estimates of k 

were fairly accurate as shown below. 

input variable  Cf  Cm 

key 1  1.71  1.89 

key 2  1.08  0.77 

key 3  2.08  1.30 

 

These values compare fairly well with the within-sex true sample values of the interval 

covariances given in the Appendix; they are at least closer than zero is. When these are used 

along with the hitmax estimate of k in equation [1] the results of the first iteration are completely 

off the mark. Apparently the reason is that assumptions A1, A2, and A3 are all quite incorrect for 

the present data but counterbalance one another when used simultaneously; relaxation of one, 

rather than making estimates better, makes them worse. 

The proposed iterative scheme above is being thoroughly revised and other iterative methods 

are being tested; the results will be given in a forthcoming research report. Suffice it to say here 

that the proposed method did not work because of violation of assumption A6. 

XIII. The Normal Method 
In PR-68-4, pp. 47-54 it is suggested that another approach results from assuming that the 

within taxa indicators distributions are normally distributed and considering each indicator 
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singly. The latent parameters for each indicator are then 

  xf ,   xm : the female and male means,  

sf, sm: the female and male standard deviations, and 

P: the base-rate of the females. 

The method proposed is to try arbitrary values for the parameters   xf , sf, P (a method is given for 

calculation of “consistent” values of   xm  and sm, from these) and calculate the goodness of fit χ2 

for the resulting mixed distribution when compared with the observed one. The set of parameter 

values yielding the smallest χ2 value are chosen as the estimates. 

This method is actually a trial and error version of the minimal χ2 estimator method where 

the χ2 function is written in terms of the latent parameters and the minimum χ2 parameter 

estimates are found by solving the following set of simultaneous equations: 

 
  
∂χ 2

∂P
= 0  

  

∂χ 2

∂xf

= 0  
  

∂χ 2

∂xm

= 0  
 

∂χ 2

∂sf

= 0  
 

∂χ 2

∂sm

= 0 . 

 (See Cramér, 1946) Such minimal χ2 estimates are asymptotic approximations of the 

maximum-likelihood estimates which have been found by Hasselblad (1966). Experimentation 

has shown the resulting Hasselblad calculation scheme is considerably less time consuming than 

the proposed trial and error χ2 method, that being the major shortcoming of the latter. Since 

empirical trials of the Hasselblad method and of a multivariate generalization of the Hasselblad 

method have been very encouraging and will be given in a forthcoming research report, the 

present analysis of an empirical test of the trial and error method is less detailed than that given 

in another empirical trial of the χ2 method (Meehl et al., 1969).  It is of interest to note that 

another method of solution of the normal model was given by Pearson (1894) where the method 

of moments was used. This resulted in a complicated set of nonic equations—the solution of 

which was very subject to sampling error. 

When using indicators that are keys made of MMPI items it is not unreasonable to assume 

normality within taxa in view of the generalized version of the central limit theorem given by 

Liapounoff (Von Mises, 1964, p. 302).  It will be shown that: 

The sum of n independent Bernoulli random variables tends toward a 

normal distribution as n→∞.  
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Proof (a modification of that outlined by Von Mises, p. 304) 

Let population parameters for the Bernoulli variables βi be pi where 0 < pi < 1 and 

i = 1, 2, 3, …, n. Then according to the Theorem of Liapounoff, the distribution of S = Σβi tends 

toward the normal distribution as n→∞, if 
  

Ε βi
k⎡

⎣⎢
⎤
⎦⎥

Sn
k

i=1

n

∑ → 0  as n→∞, for some k > 2, where 

 
Ε βi

k⎡
⎣⎢

⎤
⎦⎥
 is the absolute moment about mean of order k for the ith variable and 

  
Sn

k = piqi∑( )k
2  

Since Ε(βi) = pi and choosing k = 3, we have 

 
  
Ε βi

3⎡
⎣⎢

⎤
⎦⎥
= pi qi( )3

+ qi pi( )3
= piqi pi

2 + qi
2( ) < piqi   

Thus, 

 

  

lim
n→∞

Ε βi

3⎡
⎣⎢

⎤
⎦⎥

Sn
3

i=1

n

∑ = lim
n→∞

piqi pi
2 + qi

2( )
i=1

n

∑

piqi
i=1

n

∑⎛⎝⎜
⎞
⎠⎟

3 2   

 

  

< lim
n→∞

piqi
i=1

n

∑
piqi∑( )3 2 = lim

n→∞

1

piqi∑( )1 2   

The Liapounoff condition is satisfied if this limit is zero, in other words If Σpiqi is divergent. 

Since pi > 0 suppose there exists some ε > 0 such that pi > ε > 0.  If N is an arbitrarily large 

number, then the sum of 
  

piqi
i=1

n

∑  for any n of the items is greater than nΕ (1 – ε) which is greater 

than N if 
  
n > N

Ε 1− ε( )  . Thus 
  

piqi
i=1

n

∑  is divergent as n→∞. In the case where pi = p for all i then 

the sum is a binomial random variable and it is well known that it is approximated well by a 

normal distribution if n > 30. The above result removes the restriction that the pi are equal and, 

pending Monte Carlo study, it will be assumed that the sum is approximated adequately by a 

normal distribution for any plausible values of the vector {pi }. 

The trial and error minimal χ2 method was applied to each of three keys of the present data. 

The trial values for the frequency of the female group was allowed to go from 400 to 800 in 

increments of 50, the mean for the female group was allowed to go from 8.0 to 18.0 in 
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increments of 1.0, and the standard deviation of the female group was allowed to go from 1.50 to 

3.50 in increments of .2. Thus 9 × 11 × 11 = 1089 different sets of parameter values were tried 

and the corresponding χ2 values calculated for each key. The sets of values giving the minimal χ2 

values are given in the table below. 

 
minimal χ2 estimates 

 Males Females χ2 
key   xm    sm  1 – P   xf    sf  P  

 1 10.83 3.12 .355 15.00 1.70 .645 39.9 

 2 7.19 2.37 .410 12.00 2.10 .590 48.4 

 3 8.88 2.65 .433 13.00 2.50 .567 33.2 

 

Comparison of these values with true sample values in Table 1 shows that the mean estimates are 

accurate to nearly within one interval which is the coarseness of the trial values, the base-rate 

estimates are also each within 50/1105 = .045, the coarseness of the trial values, and the standard 

deviation estimates, while appearing to be the least accurate, are probably not too far off for most 

personality research. The three chi-square values are each significant at the .01 level; however, 

this does not mean the idealized model is to be rejected as this decision is correctly made only in 

terms of parameter estimation accuracy. For most personality research the parameter estimates 

are accurate enough and, accordingly, the normal model is acceptable as a description of the real 

taxonomy. The most alarming shortcoming of the method was the presence of several other 

minima of the χ2 function, with χ2 values very close to the minima of the minima given in the 

table above, and yet sometimes resulting from completely erroneous parameter estimates. 

Consideration of the various minima of the χ2 values for each of the three keys can be done by 

using the common estimates of the base-rates. The method was modified by fixing the base-rates 

at the average of the three originally produced values and then repeating the procedure of 

allowing   xf  and sf to vary, but the results were considerably worse than the original estimates. 

The minimum χ2 method as described by Cramér implies that there are not constraints to be 

imposed on any of the parameters by values assigned to others; thus, the method was tried where 

  xm  was allowed to vary over the same values as   xf  and sm over the same values as sf. The 
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number of χ2 values calculated for each key was 132,569 thereby resulting in a sizable 

calculation expense but the results were encouraging as shown in the table below. 

 

minimum χ2 estimates when all parameters are allowed to vary independently 

 Males Females χ2 
p   xm    sm  1 – P   xf    sf  P  

 .27 8.83 2.30 .323 14.00 2.30 .677 16.75 

 .53 7.08 2.30 .417 12.00 2.30 .503 14.72 

 .63 8.61 2.50 .417 13.00 2.50 .583 11.61 

 

The χ2 values have associated probabilities of .27, .53, and .63 and can, therefore, be 

considered as non-significant. Comparison of the parameter estimates with true sample values in 

Table 1 show that they are substantially better than the estimates of the original method and, 

indeed, are nearly as good as the trial value coarseness allowed.  It is notable also that there were 

no other locally minimum χ2 values close to those values in the table above and resulting from 

totally erroneous parameter values. For key 1, there was one χ2 value very close to the minima of 

16.75 but it resulted from a more accurate set of parameter values. 

The procedure of holding the base-rate fixed at the average of the three estimates and then 

repeating the trial and error process was then applied; the resulting frequency distributions [are 

given in tables 7, 8, and 9. —text missing in original] These tables show the estimated hitmax cuts 

(11, 10, 10) which agree well with the true samples values (12, 9, 10). 

The results of this empirical trial then indicate that all parameters should be allowed to vary 

independently. After the above calculations were performed it was realized that the taxa 

frequencies need not total to 1105 as this apparently is an undesirable constraint on one of the 

taxa parameters also. The constraints would necessarily hold for a population of values but not 

for a sample no matter whether it is of apparently large size. 
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TABLE 7 
The observed and estimated (by the normal minimal χ2 method)  

taxa frequency distributions for key 1 
 
 male  female 

score observed estimated observed estimated 

 3 3 4  0 0 

 4 11 7  0 0 

 5 8 16  0 0 

 6 32 29  3 0 

 7 41 45  5 1 

 8 50 57  9 5 

 9 58 61  20 13 

 10 60 54  30 29 

 11 65 39  27 56 

 12 53 24  62 89 

 13 29 12  93 118 

 14 10 5  110 129 

 15 7 2  103 118 

 16 2 1  107 89 

 17 1 0  61 56 

 18 0 0  28 29 

 19 0 0  14 13 

 20 0 0  3 5 

base-rate .389 .322  .611 .679 

mean 9.57 8.83  14.10 13.99 
SD 2.55 2.33  2.56 2.29 
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TABLE 8 
The observed and estimated (by the normal minimal χ2 method)  

taxa frequency distributions for key 2 
 
 male  female 

score observed estimated observed estimated 

 1 1 3  0 0 

 2 7 7  0 0 

 3 13 17  0 0 

 4 33 32  3 0 

 5 43 52  3 1 

 6 63 70  13 4 

 7 67 78  17 11 

 8 62 72  27 25 

 9 59 56  59 48 

 10 36 35  87 77 

 11 22 19  110 102 

 12 11 8  97 112 

 13 6 3  91 102 

 14 1 1  83 77 

 15 0 0  51 48 

 16 1 0  26 25 

 17 0 0  5 11 

 18 0 0  2 4 

 19 0 0  1 1 

base-rate .389 .410  .611 .586 

mean 7.31 7.09  11.68 11.90 
SD 2.42 2.30  2.47 2.41 
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TABLE 9 
The observed and estimated (by the normal minimal χ2 method)  

taxa frequency distributions for key 3 
 
 male  female 

score observed estimated observed estimated 

 2 4 4  0 0 

 3 3 7  0 0 

 4 12 16  0 0 

 5 26 29  2 1 

 6 54 44  3 2 

 7 53 59  8 6 

 8 57 66  16 15 

 9 71 64  27 31 

 10 46 53  69 53 

 11 43 37  83 79 

 12 31 22  91 100 

 13 17 12  93 100 

 14 9 5  109 100 

 15 4 2  71 79 

 16 0 1  56 53 

 17 0 0  27 31 

 18 0 0  15 15 

 19 0 0  5 6 

base-rate .389 .381  .611 .614 

mean 8.60 8.24  12.84 12.97 
SD 2.57 2.48  2.53 2.48 
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XIV. Prediction of Biological Sex Using 

the Normal Minimal χ2 Parameter Estimates 
As in section V the strong independence within taxa assumption allows one to apply Bayes’ 

Rule to predict the biological sex. 

Using the “interval proportions” method yields the following hits-misses table. 

  Biological sex 

 male female total 
predicted sex    

male  360  64  424 

female  70  611  681 

total  430  675  1105 

 

The proportion of “female” predictions which were correct was .91, similarly the “male” 

prediction hit-rate was .84, and the overall hit-rate was .88. The proportion of the predictions 

which were “female” was .616 which very closely agrees with the observed base-rate of .611. 

These results compare with those of the maximum covariance method; both methods performed 

equally well. 

The hitmax cut method of prediction yields a very similar hits-misses table as was the case 

for the maximum covariance method. 

Presumably the hit-rate in the prediction of taxon membership could be improved if the 

strong independence within taxa assumption could be weakened. Rulon et al. (1967) provide a 

prediction method which assumes that the multi-indicator distributions within taxa are 

multivariate normal and requires estimates of the taxon indicator mean vectors and the within 

taxa covariance matrices. Possibly the iterative maximum covariance method could be used to 

provide the latter. 

XV. Evaluation of the Prediction of Biological Sex 
In order to evaluate the level of accuracy of the prediction of biological sex by the maximum 

covariance and normal methods, various methods of prediction of biological sex as a dependent 

or criterion variable with the indicator variables as the independent variables were used. The first 
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method used was that of Fisher’s multiple linear discriminant function analysis. As expected one 

highly significant linear function was found and this yielded, via the hitmax cut method, a hit-

rate of .910. The second method used consisted of the following steps: (1) Each of the indicator 

scores was dichotomized at the true sample hitmax cut yielding a 3-tuple vector having eight 

values: 

1.  + + + 

2.  + + – 

3.  + – + 

4.  + – –  + : score greater than hitmax 

5.  – + +  – : score less than or equal to hitmax 

6.  – + – 

7.  – –+ 

8.  – – – 

(2) For each pattern, the number of individuals of each sex was tallied.  (3) The prediction rule 

then was to determine the pattern for the individual and predict the sex that was most frequent 

for that pattern. This method yielded a hit-rate of .856. The third method used was a slight 

generalization of the second; the three hitmax cuts were determined simultaneously. The three 

hitmax cuts were varied over trial values to determine which set of values yielded the highest hit-

rate of sex by predicting the most frequent sex just as in the second method. The set of values 12, 

9, and 9 produced a maximum hit-rate of .873.  It is of interest to note that a large variety of 

other cut score values (12, 9, 7), (12, 10, 7), (12, 9, 8), (13, 9, 8), (12, 10, 8), (11, 10, 9), 

(12, 10, 9), and (12, 10, 13) produced hit-rates over .865. A fourth method consisted of using the 

same prediction scheme referred to in sections III and XIV as the “interval proportions” method 

except that true sample within sex distributions were used rather than the method estimated ones. 

The resulting hit-rate was .910. The fifth method was similar to the fourth except the “hitmax 

cut” method was used. This method produced a surprisingly low hit-rate value of .801. None of 

the above methods except the Fisher discriminate function, make direct use of the within taxa 

covariances between indicators. Hence, the last method used was the “centour method” described 

by Rulon et al. (1967) where the within taxa distributions are assumed to be trivariate normal. 

Thus, the within taxa trivariate normal density function required the calculation of the true within 

sex sample values of the covariance matrices. This method then yielded a hit-rate of .885. 
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From these results it then is evident that the taxonomic methods predicted the actual sex just 

as well as the well-known criterion variable methods did. The classification method used with 

the taxonomic parameter methods might have been thought to be rather inadequate since it relied 

on the strong statistical independence assumption A5, but it is clear that for the present trial this 

was not the case. 

XVI. Estimation of the Hit-Miss Table 
After a taxonomic method has been applied so that it is felt that the marginal latent 

distributions have been accurately estimated by the use of various consistency tests, then it will 

normally be desirable to know how accurately individuals can be classified with a given set of 

indicators.  In other words, an estimate of the hit-miss table is needed. A simple method for 

doing this goes as follows: Consider an indicator score vector (x,y,z) and let φ1(x,y,z) be the 

density of taxon 1 at (x,y,z); similarly, let φ2(x,y,z) be that for taxon 2. Then it follows, for 

example, the proportion of the mixed group which are members of taxon 1 and are correctly 

classified as such is obtained as follows. The proportion of the individuals at (x,y,z) which are 

members of taxon 1 is 

 

  
θ x, y, z( ) = Pθ1 x, y, z( )

Pθ1 x, y, z( ) +Qθ2 x, y, z( )   

If we consider the subspace of scores such that φ(x,y,z) > .5, call it S, then the desired proportion 

is 

 
  

θ x, y, z( )
S
∑

n x, y, z( )
N

 . 

If φ(x,y,z) and n(x,y,z)  are approximated by sample values, then this value can be calculated by 

determining φi(x,y,z) for each individual (i = 1, 2, 3, ..., N) and calculating 
  

θ i
θi>.5
∑ . Similarly, the 

proportion of the total group that are correctly classified as members of taxon 2 is 
  

1−θ i( )
1−θi( )>.5
∑ , 

the proportion of taxon 1 and misclassified as taxon 2 is 
  

θ i
θi≤.5
∑ , and the proportion of taxon 2 and 

misclassified as taxon 1 is 
  

1−θ i( )
1−θi( )≤.5
∑ . Using assumption A5 and the interval proportions 

classification method the estimated hit-miss tables for each method are given below. 
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Estimated hit-miss table for the maximum covariance method 

 Actual Sex  
 

 male female total proportion 
predicted sex     

male  409  38  447  .405 

female  45  613  658  .595 

total  454  651  1105  

proportion  .411  .589   
overall hit-rate:  .925    

 

 

Estimated hit-miss table for the modified normal  
minimal χ2 covariance method 

 Actual Sex  
 

 male female total proportion 
predicted sex     

male  393  31  424  .304 

female  31  650  681  .616 

total  424  681  1105  
proportion  .384  .616   

overall hit-rate:  .955    
 

Thus the estimates of the various hit-rates tend to be consistently a few points too high but of 

close magnitude. 

XVII. Conclusions 

(1)  Both the maximum covariance and the (modified) normal minimal χ2 methods 

augmented by a simple classification method certainly worked well enough to justify further 

study and elaboration; they worked as well as could possibly be hoped for in that criterion 

variable approaches were not more accurate and the overlap of the two taxa distributions was 
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somewhat less than 2 sigma units previously thought to be a lower bound for accurate taxometric 

detection. 

(2)  The data illustrate that the assumption that the interval latent means be constant is too 

strong. The maximum covariance method only requires the assumption that  ki = ΔxΔy = k  for 

all i but several of the consistency tests require that interval latent means be constant. There are 

two general reasons why serious consideration must be given to removal of the constant interval 

mean assumption. First, the maximum covariance and the simple classification methods work 

very well even though the assumption is grossly violated. Second, there is no reason to regard the 

present data to be unusual in this respect especially with reference to other MMPI key indicator 

taxonomies. Further, it would seem to be quite plausible that corresponding to any latent 

taxonomy there are latent factors that maximally account for the indicator covariance (such as 

produced by factor analysis) and that these would be approximately isomorphic to those within 

each of the taxa; that is, the correlational structure for the mixed group differs only from that 

within the taxa in terms of magnitude. As the factor analyses mentioned in section II illustrated, 

those factors that maximally account for the item covariation of a male plus female group are the 

same as those for the male group and those for the female group. Discriminative indicators of a 

taxonomy might reasonably be expected to correlate not only due to the taxonomy, but also, 

possibly to a somewhat lesser extent, because of non-taxonomic sources. An example of the 

latter in the present data may be that of a response set where some individuals may develop a set 

to respond to these items, mostly which concern interests in certain activities such as planting 

flowers and hunting where the sex direction is easily discernable “as a man would” or “as a 

woman would” regardless of the actual sex of the individual. 

Another argument toward the same result is that indicators that discriminate between two 

taxa can also discriminate between individuals in either of the taxa; that is, things that mainly 

tend to be of a kind still can tend to be of a degree. The point is not that all taxonomies are of this 

nature but that some evidently are and in further taxonomic work with the MMPI this is the kind 

of situation to expect in view of the results of the present study. 

(3)  The extraordinary close fit of distributions by the normal model is evidence in favor of 

the accuracy and the robustness of an assumption previously viewed with some skepticism 

(Meehl, PR-65-2). The result of Von Mises given in section XIV shows the analytical 

reasonableness of the assumption, although further Monte Carlo investigation of robustness with 
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respect to interitem correlation and of short key length is required. Further, especially for MMPI 

key studies, the normal and the maximum covariance methods need not be regarded as 

alternative methods but as consistency checks of each other. Some sort of union of the two 

methods might prove to be most powerful in taxonomic detection. 

(4)  While the assumption of constant within taxa-within interval covariance holds well, the 

within taxa covariances are of higher value because of the steady increasing, with respect to 

interval value, of the within taxa interval means. One approach would be to use the covariance 

mixture equation of the total group given by [3], and assuming that the within taxa covariances 

are equal. This assumption, although generally not a clearly adequate approximation of the truth, 

might still be good enough for classification methods such as centour analysis or discriminate 

function analysis developed by Anderson (1946).  It is mainly for purposes of classification that 

the estimates of the covariances might be required, but they would also be useful as first, 

consistency tests in that they should not be too large and second, as information for the 

substantive interpretation of the taxonomy. 

(5)  The improvement of the parameter estimation due to the modification of the χ2 normal 

method to allow all parameters to vary thereby giving approximation of the maximum-likelihood 

estimates makes the maximum-likelihood solution by Hasselblad of higher value, since it 

reduces the calculation time by a factor of 10 or more, thereby making extended Monte Carlo 

robustness study feasible. Use of the Hasselblad method on the present and other data show it be 

a very encouraging one. 

(6)  Certain minor modifications of the maximum covariance method of calculations are 

clearly desirable. The manifest covariance curves should be smoothed by methods such as 

moving averages. A least-squares polynomial was used with the present data and while the 

overall results were not improved, this will not generally be the case. The interval frequencies in 

the distribution tails for the present study are clearly too small. Probably, intervals should be 

redefined such that the mixed distribution frequencies are about equal. This latter modification 

could also be used in the normal model. 

(7)  The overestimation of the hit-rates for the estimated hit-miss table apparently results 

from the strong independence with taxa assumption. With accurate estimates of the within taxa 

covariance matrices, methods such as those of Rulon or Anderson could be used to improve the 

hit-rate estimates. 
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APPENDIX 

Descriptive statistics of the output variables as a function of the 

input variable for the mixed-sex, male, and female samples 
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