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I.  Introduction 
The primary purpose of this investigation was to study a variety of artificial data samples to 

get a rough idea of the kind of real dichotomous latent taxonomies for which the maximum 

covariance method (Meehl, 1965; Meehl, 1968), when used with indicators such as three MMPI 

keys, is capable of adequate detection and those for which it is not. The term “adequate 

detection’’ is used to mean that the most important parameters of a dichotomous latent situation 

such as base-rate, valid-positive and valid-negative rates, indicator means and standard 

deviations are estimated accurately enough. Although the required degree of accuracy will vary 

from one substantive study to the next and even from one investigator to the next, there can be 

general agreement as to when estimates are totally off the mark and when estimate accuracy is 

high enough not to be of any real concern in any actual substantive application in personality 

measurement. Results that lie in the middle ground are regarded as suggesting further empirical 

and Monte Carlo study of the method. 

There are two main reasons why a method gives incorrect results: 

(1) the sample size is inadequate and/or 

(2) the assumptions of the method are not adequate approximations to the real situation. 

An important consideration is that some assumptions are more robust than others. That is, the 

robust assumption is one that does not perpetrate substantial error in estimates of the important 

parameters even though it appears to be an inadequate approximation of the actual situation. It 

will be shown, for example, that the model’s most worrisome assumption of intra-taxon 

independence appears not to be a real matter of concern when the two intra-taxon covariances 

are approximately equal although greatly different from zero. On the other hand, substantially 

unequal intra-taxon covariances will be seen to be a matter of genuine concern. 

II. The Consistency Test 
A second purpose of the study was to get a rough idea of how a few consistency tests (see 

PR-65-2, especially pp. 24-34) 1 might be used to determine whether the results of the method 

(the estimates of the latent parameters) are to be taken seriously or instead regarded as probably 

totally erroneous, so best to be totally ignored and thrown away. Again, the middle ground 

                         
1 [All cites to previous research reports refer to page numbers in original paper copies; digital 
posted versions usually have different pagination and must be searched for specific content.] 
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results indicate further detailed study. In short, a psychometric method is itself a mathematical 

model and, therefore, really another theory (see Brodbeck [1963] for the equivalence of the terms 

“model” and “theory”) and it is the purpose of the consistency test to test the appropriateness of 

the psychometric theory in terms of various relationships observed in the real data which is 

purportedly of substantive interest. In any psychometric theory it would be possible to derive 

(from the given assumptions) a number of relationships involving the latent and observed 

parameters. Those relationships not used for estimation of the latent parameters could be used as 

consistency tests. The degree of consistency of the psychometric theory with the substantive data 

is increased roughly by (1) increasing the number of consistency tests, (2) using minimally 

dependent tests in the sense that they are derivable from different major assumptions (or different 

subsets of the same), (3) using the consistency tests of maximal power—especially for the 

assumptions which are known to be of questionable robustness (or worse, known to have very 

meager robustness) and, of course, (4) increasing the degree to which the consistency test 

formulae are satisfied. Ideally, the discrepancies in (4) would be smaller than, say, one probable 

(sampling) error although this requirement is undoubtedly far too tough; that is, too many good 

substantive theory-psychometric theory combinations would be refuted. This result would then 

be the exact opposite of the current prevailing situation where statistical hypothesis tests are 

largely relied upon with concern only for α-type errors and not β-type errors (Morrison & 

Henkel, 1970). 

III. Generation of Multivariate Artificial Data 
The maximum covariance model requires at least three keys or scales of a quasi-continuous 

nature.  By this is meant, for example, that a sixty-item key is “more continuous” than a five-

item key. For a number of reasons, it appears that MMPI keys should be over ten items long for 

the usual taxonomic situation and one unpublished study indicates that MMPI keys should not be 

longer than 20-25 items. In the present study, three simulated twenty-item keys are used. 

It would be nice to use the most general analytical multivariate distributions within each 

taxon since multi-personality-measure distributions are of unknown complexity. What is actually 

known about such distributions is that it is usually true (with clear exceptions) that (1) the 

functional relationship between two measures is usually adequately approximated by a linear one 

and (2) an indicator (marginal) distribution is of a shape that is roughly normal within a taxon. If 
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one were only concerned with univariate (intra-taxa) distributions then he would be behooved to 

use the more general Pearson distribution (see Kendall, 1943-46); however, the generalization of 

the univariate Pearson distribution just to the bivariate case results in unwieldy complications. 

Such an attempt was essentially successful as a purely mathematical exercise by the 

mathematician Van Uven (1947), but a review of this work shows that it is not of practical value 

due to the large number of special cases resulting from terrible analytical complexities. 

Although a few attempts at developing a rationale for generating general multivariate 

artificial data distributions are promising at the theoretical level it was regretfully decided to put 

this difficult problem aside temporarily and use intra-taxa multivariate normal distributions for 

this initial investigation. 

Multivariate normal distributions probably come close to approximating most real 

distributions in personality inventory key-indicator study in view of the plausibility of bivariate 

linearity and marginal normality as mentioned above. 

The multivariate normal distributions were generated by use of a univariate normal generator 

in the following wav.  Let 
  
Z
n×1

= z1, z2 , ..., zn ,( )  be an n-tuple random vector such that each zi is a 

standardized random variable (with zero mean and unit variance) and let the covariance between 

zi and zj be σij for each ij pair, if 

 
nxn  

   

=
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is the given covariance matrix and the zi are distributed multivariate normally and standardized 

then these conditions can be written as 
  
Z
n×1=

d  N(0,   nxn 
). Let 

  
Y
n×1
=  (y1, y2, ..., yn) be a set of such 

variates except where = I the identity matrix. Suppose that 
  
Z
n×1
= T

n×n
⋅ Y

n×1
, where T is an unknown 

transformation matrix. Thus,   nxn   
= Ε Z

n×1
⋅ ′Z

1×n( ) = Ε T ⋅Y( ) ⋅ TY( )′ = Ε TY ⋅ ′Y T( ) = TΕ Y ′Y( ) ′T ; since 

  Ε Y ′Y( ) = I , we have,   nxn  
= T

n×n
⋅ ′T

n×n
 and it is seen that T is the matrix such that the product of it 

and its transpose is the given . Well known methods exist for solving the latter equation for T. 

This is an approximation to 
the hand-drawn symbol used 
by Golden: 
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IV. The Maximum Covariance Method 
The method is given in Section 1, pp. 2-7 of PR-68-4 as a revision of the original method 

given in Section 3, pp. 10-12 of PR-65-2. An empirical trial of the method is reported in PR-73-

2, where the method is developed from precisely stated assumptions. An outline of the method is 

given below in terms of assumptions which are slightly different from those of the latter above 

report; a change is made because multivariate normal distributions partially satisfy the first 

assumption as formerly stated. 

A. Let w, x, and y be three indicators such that w is the input indicator and x and y are the 

output indicators. The latent taxa distributions on the input indicator are estimated by use of 

manifest relationships between the two output variables. 

B. The covariance between x and y for any interval of w is given by 

 covw(x,y) = pw covrw(x,y) + qw covlw(x,y) + pw qw  ΔxwΔyw  [1] 

where  pw  is the proportion of individuals in w interval that are members of the right* taxon, 

 qw is  the corresponding left taxon proportion (pw + qw = 1), 

covrw(x,y)  is the manifest conditional covariance between x and y for the right taxon 

members in interval w, 

 covlw(x,y)  is the corresponding left taxon covariance, 

 Δxw  is the mean on x for the right taxon members in interval w less that for the left 

taxon, and  

  Δyw  is the corresponding mean difference on y. 

C. Under the assumptions 

 A1: varr = varl = var, where var is the common within taxon variance on w, 

 A2: covrw(x,y) = covlw(x,y) = 0 for all w, and 

 A3: covr(x,y) = covl(x,y) = cov(x,y) (that is, the total within taxa covariances are equal),  

                         
*
 The taxon with the highest scores on each of the input indicators (on the right side of the histogram) 

will be called the right taxon; the other taxon will be called the left taxon. 
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it follows that for multivariate normal distributions** 

 
  
Δxw =

cov x, y( )
varw

w− wr( ) + xr −
cov x, y( )

varw

w− wl( ) + xl   

 
  
=

cov x, y( )
varw

wl − wr( ) + xr − xl   

which is constant for all w and, likewise, that 

 
  
Δyw =

cov x, y( )
varw

wl − wr( ) + yr − yl    

is constant for all w.  Since  ΔxwΔyw = k (a constant) for all w, it follows that max{covw(x,y)} 

occurs in the hitmax interval (where pw = qw = ½) and the frequency distributions intersect) and 

is equal to the latent quantity ¼ ΔxwΔyw = ¼k. 

D. Also, it follows that 

 
  

pw
2 − pw +

covw x, y( )
max covw x, y( ){ } = 0 , [2] 

a quadratic with pw and qw as two roots. In other words, the latent frequency distributions on w 

for each taxon can now be estimated. From these, the latent taxa means, standard deviations, 

base-rates and any other marginal distribution parameters are estimated. 

E. With three indicators the roles of input and output can be interchanged to produce three 

different arrangements as shown below. 

input indicator  output indicator 

 key 1  key 2,   key 3 

 key 2   key 1, key 3 

 key 3   key 1 , key 2 

F. Strengthening the assumptions A2 and A3 even further to 

 A4:  the indicators are independent in the strongest sense within taxa 

will allow for classification of individuals.  That is, for any three intervals w, x, and y, on the 

                         
** This equation originally incorrectly typed as  

 
  
Δxw =

cov x, y( )
var

w− wr( ) + xr −
cov x, y( )

varw

w− wl + xl( )   
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three keys, the density (the proportion of the individuals in the taxon with the scores w, x, and y), 

φ(w, x, and y), is equal to φ(w)φ(x)φ(y) where, for example, φ(w) is the taxon density for score w 

on key w. Then the probability that an individual is a member of the right taxon given by a vector 

of key scores (w, x, y) is 

 
  
Pr right taxon|w,x, y( ) = Pφr

Pφr +Qφl

=
Pφrwφrxφry

Pφrwφrxφry +Qφlwφlxφly

  

where  P is the base-rate for the right taxon 

 Q (= 1 – P) is the base-rate for the left taxon  

 φr = φ(w, x, y) for the right taxon 

 φl = φ(w, x, y) for the left taxon, and 

 φrx = the right taxon density function for indicator x, for example. 

Then if the total misclassification is to be minimized it can be shown that the required 

classification rule is: 

“Classify as ‘right’ if Pr(‘right’|w, x ,y) > .5, and classify as ‘left’ otherwise.” 

The base-rate was estimated for each of the three keys giving close, but of course, somewhat 

different results.  For use in the classification formula the simple arithmetic average of the three 

estimates was used. The estimated taxon density functions were determined directly from the 

corresponding estimated frequency functions. 

As mentioned above these assumptions are sufficient but not necessary conditions for the 

method. Weaker sufficient conditions than these exist but the stated assumptions are more easily 

analyzed in terms of multivariate normal distributions. 

V. The Robustness and Power of the Method 
Various sets of parameter values were chosen so the error of estimation of the parameters 

could be studied as a function of systematic variation of sample size (N = 1000, 800, 600 and 

400), of base-rates (.5, .6, .7, .8, and .9), of separation between the two taxa means (2, 3/2, 1, 1/2 

sigma units), of different taxa variance ratios (11/10, 4/3, 5/3, 3), of different within-taxon 

correlations (.1, .3, .5, and .8), and of different within-taxa correlation ratios (0, 4). The variation 

in taxa variance ratios tested the robustness with respect to assumption A1; the variation of the 

within-taxa covariance ratios tested the robustness with respect to A3; and the variation of the 

within-taxa correlations tested the classification method robustness with respect to A4. The 

In this equation (and x,y,z in “where P” 
definitions following) the y (or w sub-
script was replaced with z, misnaming 
the 3 indicators as w,x,z or x,y,z instead 
of the w,x,y being used here. All have 
been changed to continue using 
indicators w,x,y. 
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following result is used in regard to analyzing robustness with respect to the zero within-interval-

within-taxon covariance assumption A2: 

Theorem: When cov(x,y) = 0, cov(x,w) = 0, and cov(y,w) = 0 for each taxon, then it follows 

that covlw(x,y) = covrw(x,y) = 0 for all w. 

Proof: This result follows under the conditions (a) constant   xrw  and/or   yrw  (and constant   xlw  

and/or   ylw ) for all w and (b) covrw(x,y) ≥ 0, covlw(x,y) ≥ 0 for all w. It would appear that these 

conditions would generally be met if covr(x,y) = covl(x,y) = 0, 

If the distribution is assumed to be trivariate normal, then the variances and covariances of 

the conditional distributions are not a function of the value of the fixed variable.  From results by 

Anderson (1958, p. 28) it can be shown that 

 
  
cov x, y | w( ) = cov x, y( )− cov x,w( )cov y,w( )

var w( )   

which is zero when the three covariances on the right side are zero. When these three 

covariances are not zero, the formula allows for the calculation of the amount of departure from 

the condition of assumption A2. In the case where cov(x,y) = cov(x,w) = cov(y,w) = rs where r 

and s are the common between intra-taxon correlation and the common intra-taxon standard 

deviation, respectively, then 

 
  
cov x, y | w( ) = rs− rsrs

s2 = r s− r( )   

for all w. 

Thus we see that only when the intra-taxon correlations are systematically varied from zero, 

the robustness with respect to assumption A2 is examined. 

For all of the parameter set values certain things were kept constant for this study. Three 

indicators, integerized to a range of 0 to 20 such as those of personality keys, were always used 

in the three role combinations given above and the parameters were given the same values for 

each indicator.  For each set of parameter values, each of twenty-five different independent 

random samples were generated and each used as data for the calculations of the method. 

It should be noted that the manifest mixed group covariance curve was always smoothed 

around the maximum by the use of a least-squares fitting parabola, although experimentation has 

since shown the procedure could have been deleted without markedly affecting the method’s 

general level of estimation accuracy and taxonomic detection power. 
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The various sets of parameter values are described in Table 1, and the summary of the 

parameter estimates is given in Table 2. The parameter estimates for a sample were regarded as 

accurate enough if the base-rates and hit-rate estimates were within .10 of the true values, and the 

means and standard deviation estimates were within one interval of the true values.  

First, different total sample sizes of 1000, 800, 600 and 400, for varl = varr = σ, a difference 

between the taxa means of 2σ, P = .5, and zero intra-taxon correlations, each gave average errors 

of .01 (2%) in the estimation of P, less than ¼σ (this is ½ of an indicator interval) in the 

estimation of the taxa means and standard deviations.  

Second, different base-rates of .6, .7, .8 and .9 for N (total sample size) = 1000, σr = σl = σ, µr – 

µl = 2σ, and zero intra-taxon correlations, gave corresponding average errors of .03, .04, .02 and 

.60 in the estimation of the base-rate and average errors of less than  
3

8σ ,  
1

2σ ,  
1

2σ ,  
3

2σ , in 

the estimation of the means and standard deviations.  

Third, different µr – µl separations of  
3

2σ , 1σ, and  
1

2σ , for N = 1000, σr = σl = σ, P = .5 and 

zero intra-taxon correlations, gave average errors of .01 in the estimation of P and less than ¼σ 

in the estimation of the means and standard deviations.  

Fourth, different standard deviation ratios (σr /σl) of 11/10, 4/3, 5/3 and 3 for N = 1000, µr – µl = 

½(σr + σl), P = .5 and zero intra-taxon correlations, gave averaqe errors of .02, .03, .08 and .14 in 

the estimation of P and average errors less than ¼σ, ¼σ, ¼σ, ½σ in the estimation of the means 

and standard deviations.  

Fifth, different intra-taxon correlations of .1, .3, .5 and .8 for N = 1000, µr – µl = 2σ, σr = σl = σ,  

and P = .5 gave average errors of .01 in the estimation of P and ¼σ, ¼σ, ½σ, and 1σ in the 

estimation of the means and standard deviations. 

More briefly, then, the method requires the following parameter boundaries in order to work 

well enough for most personality measurement work; i.e. base-rates accurate to within .10 and 

indicator means and standard deviations accurate to within ½σ (an intervaI width) : 

a) sample size ≥ 400, 
b) base-rates not disproportionate more than (.2, .8), 
c) separation of means ≥ 1.0σ, 
d) standard deviation ratio < 1.7, 
e) intra-taxon correlations ≤ .5. and 
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f) the difference between the two corresponding intra-taxon correlations < .4. 

The above conditions are, of course, necessary but not sufficient conditions for the method to 

work well. The only stringent condition of these would appear to be (f). Further study of this, 

condition will be given in a forthcoming report on an iterative modified version of the maximum 

covariance method, where the within taxa covariance assumptions are relaxed. 

TABLE 1 
Description of Sample Sets 

  set variable N P   xl    xr  Sl Sr Δ Sr/Sl r  

1.1 N 1000 .5 8 12 2 2 2 1 0 * 
1.2  800 .5 8 12 2 2 2 1 0 * 
1.3  600 .5 8 12 2 2 2 1 0 * 
1.4  400 .5 8 12 2 2 2 1 0 * 

2.1 P 1000 .6 8 12 2 2 2 1 0 * 
2.2  1000 .7 8 12 2 2 2 1 0 * 
2.3  1000 .8 8 12 2 2 2 1 0 * 
2.4  1000 .9 8 12 2 2 2 1 0  

3.1 Δ 1000 .5 9 12 2 2 1.5 1 0 * 
3.2  1000 .5 10 12 2 2 1 1 0 * 
3.3  1000 .5 11 12 2 2 .5 1 0  
3.4  1000 .5 12 12 2 2 0 1 0  

4.1 Sr/Sl 1000 .5 8 12 1 .9 2.1 2 1.1 0 * 
4.2  1000 .5 8 12 1 .7 2.3 2 1.3 0 * 
4.3  1000 .5 8 12 1.5 2.5 2 1.7 0 * 
4.4  1000 .5 8 12 1 3 2 3 0  

5.1 r 1000 .5 8 12 2 2 2 1 .1 * 
5.2  1000 .5 8 12 2 2 2 1 .3 * 
5.3  1000 .5 8 12 2 2 2 1 .5 * 
5.4  1000 .5 8 12 2 2 2 1 .8  

          rl/rr  
6.1 N 1000 .8 8 12 2 2 2 1 .5/.125  
6.2 rl/rr  = 4 800 .8 8 12 2 2 2 1 .5/.125  
6.3  600 .8 8 12 2 2 2 1 .5/.125  
6.4  400 .8 8 12 2 2 2 1 .5/.125  

 
 N: sample size 
 P: base-rate of the right-taxon 

  xl : mean of the left taxon on each indicator 

  xr : mean of the right-taxon on each indicator 
 Sl: standard deviation of the left taxon on each indicator 
 Sr: standard deviation of the right taxon on each indicator 

 
 
 Δ: (  xr –  xl )/S where S = (Sl + Sr)/2 
 r: intra-taxon correlation between  
   indicator pairs 
 *: parameter estimates judged as accurate 
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VI.  Parameter Estimation Bias 
The results show that the means tend to be estimated as too close together. Also, the 

variances are nearly always too large. Both these results can be explained as follows. When the 

within-taxon between indicator covariances are zero it is true that covw(x,y) = pw qw k, for all w, 

where k is estimated by max{covw(x,y)}, and 
  
pw =

1± 1− 4covw x, y( ) / k( )
2

 where the minus 

sign is used for w less than the hitmax cut (where covw(x,y) is a maximum) and the plus sign for 

w greater than the hitmax cut. While the sample estimate of covw(x,y) is unbiased, it is clear that 

k will tend to be overestimated since it is a sample maximum.  The error in pw, Δpw, caused by 

the error in k, Δk, can be estimated by 

 

  

Δpw =
±∂pw

∂k
where

∂pw

∂k
=

cov x, y( )
k 2 1− 4cov x, y( )

k

 . 

Monte Carlo study of the magnitude of Δk would allow one to correct the estimates of pw so as to 

be more nearly unbiased.  Presently, pw is biased to be large for values to the right of hitmax or 

for most of those values of pw which are substantially greater than zero. Since 

 

  

∂2 pw

∂cov x, y( )∂k
= 1

k 2 1−
4cov x, y( )

k

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1
2
+

cov x, y( )

1−
4cov x, y( )

k

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

3
2

  

is positive, we see that 
 

∂pw

∂k
  is a monotonically increasing function of cov(x,y), and since pw is 

directly proportional to 
 

∂pw

∂k
 it is clear that Δpw will be a monotonically decreasing function of w 

(for w greater than hitmax). This will tend to cause the right taxon distribution to be biased 

toward the left and similarly the left one to the right. Thus, the means are each biased toward the 

middle and the variances biased to be too large. Also, the base-rate for the right taxon will be 

biased too large since the Δpw are positive and the base-rate for the left will be too small since 

the Δσw’s were calculated from σw = (l – pw); this is observed to generally be the case. 
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VII. The “Total Covariance” Consistency Test [T1] 
The covariance mixture equation can be written for the total mixed group as 

 covm(x,y) = P covr(x,y) + Q covl(x,y) + PQK [3] 

where P is the base-rate of the right taxon 

Q is the base-rate of the left taxon, and 

K is the product of the differences in taxa means on x and y.  

It follows that if covr(x,y) = covl(x,y) = 0 as A3 requires, then the quantity 

    T1 = covm
! − P̂Q̂K̂   [4] 

 where the carat denotes parameter estimates, can be expected to be close to zero if the parameter 

estimates are accurate.  By considering the differential of T1 we have 

 
  
dT1 =

∂T1

∂covm x, y( ) d covm x, y( ) + ∂T1

∂P
dP +

∂T1

K
dK   

and it is shown that 

   ΔT1 ≤ Δcovm x, y( ) + PQΔxΔ Δy( ) + PQΔyΔ Δx( ) + 1− 2P( )ΔxΔyΔP   [5] 

If parameters are estimated accurately enough for practical work then 

 
  

Δ Δy( )
sy

≤1 2 and
Δ Δx( )

sx

≤1 2  , 

when sx and sy are the within taxa standard deviations and  ΔP < .1. It can tentatively be assumed 

that 

 
  

Δx
sx

≤ 2 and Δy
sy

≤ 2   

if that is what the parameter estimates indicate and since larger mean separations should allow 

for rather simple taxonomic parameter estimation. For the method to work well enough we have 

shown that P > .2 or (1 – 2P) < .6. By use of Fisher’s z-transformation, it can be shown that 

covm(x,y) < .64 with a probability of more than .95.  Hence, we can conclude from [5] that 

 
  
ΔT1 < .64+1 4 ⋅2 ⋅

sysx

2
+1 4 ⋅2 ⋅2 ⋅

sxsy

2
+ .6 ⋅2 ⋅sx ⋅2 ⋅sy ⋅.1   

or, if sx = sy = s, 

   ΔT1 < .64+ .74s2   
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As was shown above   ŝ = s , so   T1 < .64+ .74ŝ2 . For the present trivariate arrangement the test can 

be applied three times for each sample.  For the consistency test to be passed it will be required 

that all three values of T1 be less than the above limit. The results of the test are given in Table 3. 

The test is apparently a sensitive detector of within-taxa correlations of .5 or above; this result is 

certainly reasonable since the test rests squarely on the assumption that these correlations are 

zero. 

Various sets of twenty-five samples each were generated from three and four taxa with small 

mean separations and equal base-rates. Each of these samples failed this consistency test. 

VIII.  The “Maximum Mean Difference” Consistency Test [T2]1 
If we consider a cut score on the input variable, then the mean of the individuals with scores 

above the cut can be calculated, call it   xaw ; similarly for the mean below, call it   xbw .  Then these 

quantities can be calculated for all values of w and the maximum of the difference, 

  max xaw − xbw{ } , determined. It was argued in PR-68-4 that the maximum should occur near the 

hitmax cut. It can be shown that if   xlw and   xrw  are each constant for all w then the function 

  xaw − xbw  is concave downward with minima at the endpoints of the scale. It is easily seen that 

 
  

lim
w→wmax

xaw − xbw( ) = xr − Pxr +Qxl( ) = Q xr − xl( )   

and 

 
  

lim
w→wmin

xaw − xbw( ) = Pxr +Qxl − xl = P xr − xl( )  . 

If T2 = max(  xaw − xbw ) is larger than either of these minimum extrema then it must be true that 

   T2 = max xaw − xbw( ) >1 2 xr − xl( )  . 

If the means are far enough apart so that the method provides accurate parameter estimates, then 

  xrw –  xlw  > s, where s is the common standard deviation; thus T2 > s/2.  As would be hoped, this 

test correctly identified all samples of the two parameter sets where the separation in the means 

was ½ s and zero. It also incorrectly rejected 2 of the 25 samples when the separation was 1s and 

the parameters were accurately estimated. 

                         
1This consistency test subsequently became the MAMBAC (Mean Above Minus Below A Cut) procedure 
(Meehl & Yonce, 1994). 
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The parameter T2 also has an upper limit. Since the largest value of max{  xaw − xbw } is 

obtained when the taxa are totally separated, this value is clearly   xr –  xl . Thus T2 <   xr –  xl  or 

  T2 < x̂r − x̂l . This test turned out to be very sensitive in the detection of more than two taxa (as 

did the first consistency test). When the taxon correlations were .8 the parameter estimates were 

quite inaccurate. This test detected each of these samples; also 7 of the samples where the 

correlation was .5 were incorrectly rejected, 

IX. The “Hit-Rate Proportion” Consistency Test [T3] 
If we consider a cut on the input variable and the resulting proportion of the individuals 

above the cut that are correctly identified, haw, and the corresponding proportion below, hbw, and 

let the proportion of the total number of individuals above the cut be Paw and that below be Pbw, 

then the quantity 
  

Paw

Pbw

−
uaw

ubw

, where uaw = haw – 1/2 and ubw = hbw – 1/2, is argued to have a 

minimum value near the hitmax cut in PR-68-4. It appears that for parameter estimates to be 

accurate it is necessary that 
  
T3 = min

Paw

Pbw

−
uaw

ubw

⎧
⎨
⎩⎪

⎫
⎬
⎭⎪
< 2 . This test correctly identified those samples 

where the taxa variance ratios were 3 and gave incorrect parameter estimates. A small percentage 

of other parameter sets producing incorrect estimates were also correctly identified. The test 

incorrectly identified 10 of the 23 samples where the separation in the means was 1σ and 

accurate estimates produced. 

X.  The “Sum of the Hit-Rates” Consistency Test [T4] 
In PR-68-4 it is arqued that T4 = max{haw + hbw} occurs near the hitmax cut. For the present 

purposes it is clear that for a cut near hitmax for any distribution with base-rates not more 

disproportionate than (.2, .8), haw > ½ and hbw > ½, or T4 > 1. If the separation between the means 

is only 1σ it can be shown that for normal distributions with base-rates not more disproportionate 

than (.2, .8) that T4 > 1.3. 

This test proved sensitive in the detection of base-rates more disproportionate than (.2, .8), 

variance ratios of 3 and correlation ratios of 4, all of which produced inaccurate parameter 

estimates.  A very small percent of the samples where parameter estimates were accurate were 

incorrectly rejected. 
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TABLE 3 
Joint frequency distribution of accurate-not accurate parameter estimates 

 and pass-fail of each consistency test 
   consistency test 

set  # samples  test 1 
pass fail 

 test 2 
pass fail 

 test 3 
pass fail 

 test 4 
pass fail 

1.1 accurate 
not accurate 

25 
0 

25 
0 

0 
0 

25 
0 

0 
0 

25 
0 

0 
0 

25 
0 

0 
0 

1.2 accurate 
not accurate 

25 
0 

25 
0 

0 
0 

25 
0 

0 
0 

25 
0 

0 
0 

25 
0 

0 
0 

1.3 accurate 
not accurate 

25 
0 

25 
0 

0 
0 

25 
0 

0 
0 

25 
0 

0 
0 

25 
0 

0 
0 

1.4 accurate 
not accurate 

24 
1 

24 
1 

0 
0 

24 
0 

0 
1 

25 
0 

0 
0 

24 
0 

0 
1 

2.1 accurate 
not accurate 

22 
3 

22 
3 

0 
0 

22 
3 

0 
0 

25 
0 

0 
0 

23 
3 

0 
0 

2.2 accurate 
not accurate 

23 
2 

23 
2 

0 
0 

23 
2 

0 
0 

25 
0 

0 
0 

23 
2 

0 
0 

2.3 accurate 
not accurate 

25 
0 

25 
0 

0 
0 

25 
0 

0 
0 

25 
0 

0 
0 

17 
0 

8 
0 

2.4 accurate 
not accurate 

0 
25 

0 
25 

0 
0 

0 
25 

0 
0 

0 
25 

0 
0 

0 
25 

0 
0 

3.1 accurate 
not accurate 

25 
0 

25 
0 

0 
0 

25 
0 

0 
0 

25 
0 

0 
0 

25 
0 

0 
0 

3.2 accurate 
not accurate 

23 
2 

23 
2 

0 
0 

23 
2 

0 
0 

13 
0 

10 
2 

15 
1 

8 
1 

3.3 accurate 
not accurate 

0 
25 

0 
25 

0 
0 

0 
0 

0 
25 

0 
17 

0 
8 

0 
10 

0 
15 

3.4 accurate 
not accurate 

0 
25 

0 
25 

0 
0 

0 
0 

0 
25 

0 
18 

0 
7 

0 
5 

0 
20 

4.1 accurate 
not accurate 

25 
0 

25 
0 

0 
0 

25 
0 

0 
0 

25 
0 

0 
0 

25 
0 

0 
0 

4.2 accurate 
not accurate 

25 
0 

25 
0 

0 
0 

25 
0 

0 
0 

25 
0 

0 
0 

25 
0 

0 
0 

4.3 accurate 
not accurate 

25 
0 

25 
0 

0 
0 

25 
0 

0 
0 

25 
0 

0 
0 

25 
0 

0 
0 

4.4 accurate 
not accurate 

0 
25 

0 
25 

0 
0 

0 
25 

0 
0 

0 
25 

0 
0 

0 
25 

0 
0 

5.1 accurate 
not accurate 

25 
0 

25 
0 

0 
0 

25 
0 

0 
0 

25 
0 

0 
0 

25 
0 

0 
0 

5.2 accurate 
not accurate 

25 
0 

25 
0 

0 
0 

25 
0 

0 
0 

25 
0 

0 
0 

25 
0 

0 
0 

5.3 accurate 
not accurate 

25 
0 

18 
0 

7 
0 

25 
0 

0 
0 

25 
0 

0 
0 

17 
0 

8 
0 

5.4 accurate 
not accurate 

0 
25 

0 
0 

0 
25 

25 
0 

0 
0 

25 
0 

0 
0 

0 
0 

0 
25 

6.1 accurate 
not accurate 

0 
25 

0 
25 

0 
0 

0 
25 

0 
0 

0 
25 

0 
0 

0 
0 

0 
25 

6.2 accurate 
not accurate 

0 
25 

0 
25 

0 
0 

0 
25 

0 
0 

0 
17 

0 
8 

0 
0 

0 
25 

6.3 accurate 
not accurate 

0 
25 

0 
25 

0 
0 

0 
25 

0 
0 

0 
17 

0 
8 

0 
0 

0 
25 

6.4 accurate 
not accurate 

0 
25 

0 
25 

0 
0 

0 
25 

0 
0 

0 
19 

0 
6 

0 
0 

0 
25 
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XI.  Conclusions 
As can be seen from Table 3, every sample that produced incorrect sample estimates failed at 

least one of the four consistency tests.  Only in set 3.2 where the mean separation was 1σ were 

the results incorrectly rejected; it should be noted that these samples produced only marginally 

acceptable parameter estimates. Thus, the consistency tests worked nearly perfectly for this 

study.  Further, it is important to discover that the single sample instance in which the 

consistency tests “failed” was one where good results were incorrectly rejected, rather than one 

of accepting erroneous parameter estimates. It appears so far that if the consistency tests say 

“okay”, one can rely heavily on this clearance. 

In PR-68-4, several more consistency tests are suggested and should be tried; those chosen 

for this study are only the first steps. Most likely, many better ones will be found. 

This method and consistency tests should be studied with more general, or at least, different 

distributions than multivariate normal ones. Most of the results obtained here can be confidently 

used in practice only when approximate multivariate normality is obtained. 

The relation between size of the consistency test parameter and size of the parameter estimate 

error is clearly not a dichotomous one as was used for summarizing the results in Table 3, 

Analytical or more detailed Monte Carlo investigation of the total relation would provide further 

insight via the consistency test parameters. 

There is another consistency test of a different nature than those described. Suppose that a 

real data sample provided parameter estimates indicating that the within taxa distributions were 

approximately multivariate normal. This could be determined, for example, by use of goodness 

of fit χ2 tests on the mixed marginal (indicator) distribution and so forth. Using the produced 

parameter estimates, artificial data samples of the same size could be generated and analyzed by 

the method. The resulting parameter estimates should show (a) stability and (b) sufficient 

accuracy. If either of these conditions do not obtain then the real sample results should be 

rejected. If both conditions do obtain but the artificial estimates differ substantially from the real 

ones, then the possibility of non-multivariate normality must be considered. If this consistency 

test method were used with the present data, then all parameter sets would be perfectly 

identified. 



   18 

XII.  Further Comments on the Consistency Test 
The estimation procedures are complemented by “consistency tests” which describe “how 

well the model does fit” the data in a sense that is analogous to how the three validity keys are 

used with profile interpretation of the MMPI. That is, some people malinger, randomly respond, 

are too defensive, lie and so on to such an extent that the MMPI item responses do not serve as 

“indicators” of “the underlying latent phenomena” or “personality,” if you will, in a manner that 

is consistent with the nomothetic MMPI model of pathological personality phenomena. If 

consistency tests prove to be worthy of consideration in psychometric model building, then it is 

interesting to note that this simple idea was used by clinicians long before psychometricians. It 

would appear that consistency testing in utilization of a mathematical model is just as obviously 

required and is a matter of simple common sense, just as it was to builders of the MMPI. Anyone 

would know that some people will randomly respond and lie and so on when taking the MMPI.  

But it seems that few psychologists act as if Nature could be more devious than mathematicians 

require. 

In general, any mathematical model can be thought of as a set of equations relating a set of 

latent parameters to a set of manifest parameters.  Some of these equations may involve only 

latent parameters and some involve only manifest parameters. Most of the equations which are of 

the most immediate concern in the development of a model involve both kinds of parameters. 

There are two special types of equations:   

(1) the assumptions and  

(2) the derived equations which express the latent parameters as explicit functions of 

the manifest parameters.   

Traditionally, the psychometrician usually is satisfied with just the development of (2) from (1). 

While such a feat may require a high degree of mathematical competence and creativity and can 

be regarded as the solutions of the most immediate importance, there remains further 

mathematical derivation to prepare the model for application to substantive problems.  Such 

derivation can be roughly described to be that of deriving all further relations between the 

parameters that one is able to. The resulting set of equations can be used for determinating how 

well the model fits the data of the real phenomena; hence can be called the  

(3) “consistency equations.”  

If the assumptions (1) are roughly correct and the estimates of manifest parameters (obtained 
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directly from the data, of course) and of the latent parameters (by the calculations given by (2)) 

are roughly correct, then substitution of the parameter estimates into (3) will show that they 

roughly satisfy each equation of (3). 

There are at least three sources of parameter estimation error.  First, the assumptions (1) are 

always mathematical idealizations and never strictly true for real phenomena, and therefore it is 

clear that the estimates resulting from (2) will contain some error and therefore substitution into 

(3) will reveal that these estimates are not perfect solutions of (3).  Second, the manifest 

parameters contain sampling error (between individuals) and measurement error (within 

individuals); hence, the latent parameter estimates contain sampling and measurement error 

(since they are functions of the manifest parameters as given by (2)). Third, it can be true that the 

calculation method used in (2) is one that according to the underlying mathematical theory gives 

at best an approximate solution to the equations resulting from (1).  Therefore, it is clear that at 

best we can only hope for approximate solutions of (3). 

Theoretically, sampling error, measurement error, and “solution” error can be assessed rather 

directly and can be reduced to nearly any arbitrarily small size.  However, “assumption” error 

does not seem to be of this same sort in that its size cannot be directly assessed (since an 

“assumption” as opposed to a “hypothesis” is by definition not directly testable) and is not 

reducible to nearly any arbitrarily small size by any systematic procedure as would be used in 

reducing (a) sampling error (increase the sample size), (b) measurement error (reliability theory, 

factor analysis, and item selection methods provide general guidance), or (c) solution error (for 

example, continue an iterative calculation procedure until convergence conditions are adequately 

satisfied). The basic difference between assumption error and the others is evidenced by the 

existence of a variety of theories to assess the latter while there is, of course, no corresponding 

theory of verisimilitude to numerically assess assumption error. Suppose that only assumption 

error is a matter of concern; that is, all other sources of error have been eliminated. Presumably, 

continual revision of the model so that the parameter estimates of (2) become closer to perfect 

solutions of (3) would increase the verisimilitude of the model (assuming that the consistency 

equations are chosen correctly so as to provide sufficient testing of the fit of the model to the 

data).  The consistency testing development might attempt to meet criteria such as the following: 

(a) there is one for as many subsets of the assumptions as possible, 

(b) they are not redundant in that they are derivable from (2); even the addition of “weak” 
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assumptions to (2) should not allow the derivability of (3), 

(c) they follow as “directly” from (1) as does (2) and, in fact, might be partially 

interchangeable with (2), 

(d) they are adequately sensitive to assumption errors that are most probable, 

(e) they are adequately sensitive to assumption errors that are most troublesome in that 

they cause intolerable errors in (important) parameter estimates, 

(f) they provide clues as to how the model might be revised to obtain a better fit (by 

pointing out the set of disparate assumptions with the aid of (a)), and 

(g) they indicate when the model is totally off the mark and should not be used at all. 

With the current state of the art of mathematical model building in the area of personality 

measurement it would be a major contribution to meet even the last of these criteria. 

In summary, the idea of consistency testing follows that of the physicists and other natural 

science mathematical model builders. In any mathematical model fitting there are latent variables 

(not directly observable) call them x1, x2, x3, … and manifest variables y1, y2, y3, …. According to 

some psychometric theory the xi’s and the yi’s are related by a set of equations 
   
f j !xi , !yi( ) = 0  

which results from some set of assumptions A1, A2, …, An. Let the set of equations 

 
   
F = f j !xi , !yi( ) = 0{ }   

be such that the Ai are included as a subset of F. Then in all usual mathematical model 

developments some of those member equations of F are such that they involve both the   !xi  and 

the   !yi  and are used such that each of the   !xi  are solved for in terms of the   !yi  which, of course, 

are estimated directly from the data. This is done by whatever mathematical means one can best 

come up with. Consideration is usually given to the computational time (so as to decrease 

expense) and to the avoidance of excessive propagation of errors in the   !yi  to errors in the   !xi . 

With enough mathematical competency it is possible to derive many further members of F 

(possibly it could become of infinite size). Each of these further member equations can each be 

checked to see if the already obtained approximations of the latent and manifest parameters when 

plugged in are approximately true. This is the consistency test. We do not know how 

“approximately true” they must be so we must be guided by intuition and experience and 

possibly the use of a higher level theory of error propagation. Psychometric theories (equals 

“methods” equals “models”) hardly ever make any attempt to do such internal checking. An 
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exception to some extent is the Lazarsfeld and Henry (1968) discussion of the goodness of fit 

tests of the latent class model where it is suggested that the manifest joint compound proportions 

for the various higher order indicator patterns be checked against those predicted from the 

previously acquired estimates of the lower order proportions. Typically, the investigator of a 

substantive problem has a real data matrix, applies the calculations and gets his answers, say, 

estimates of factor loading parameters. He looks at the relative sizes and patterns; it usually 

makes some sense and he goes directly from there back to within his own substantive theory 

ballpark. But how much corroborative support has been found for the general application of the 

psychometric theory of factor analysis to the testing of substantive theories in a wide variety of 

psychological phenomena? One might resort to the total payoff so far in factor analytic studies 

(indicated, say, by the popularity of the method) in an area, for example, such as personality 

measurement as evidence that somehow all assumptions must be in pretty good agreement with 

the truth, generally. But Lykken (1971), for example, has taken nearly a diametrically opposite 

view of this particular “total payoff” so far in the personality measurement area. Factor analysis 

is a good example of how psychometric theory that is unsupported by development of 

consistency tests is still faithfully used to test substantive theories. Another good example might 

be internal consistency reliability theory. It is always simple to obtain an estimate of a parameter 

according to calculations of some method, but that doesn’t mean the estimates are meaningful 

and accurate. 

Adequately developed consistency tests such as in the example diagrammed below could 

help pinpoint assumptions that cannot be lived with. 

 
Since f1 ≠ 0 and f2 ≠ 0 but f3 = f4 = f5 = 0 (in an approximate sense) then we know that A2 is likely 

to be wrong. Presumably, we would be able to alter this assumption and we would probably 

desire to “weaken” it. After this model alteration we could try again. In similar fashion, the data 

could be transformed and generally controlled by whatever means possible so that it fits the 

models for which we are capable of handling the mathematical problems. The physicist does 

both; that is, he continually alters his model to gradually fit better, and he continually alters his 
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data collection methods so the data are more easily fitted. Further, he does both simultaneously 

in an integrated fashion. The measurement psychologist does neither “model bootstrapsing” nor 

“data bootstrapsing.” An integrated bootstrapsing is blatantly lacking since models are invented 

by the methodologically inclined while the data are collected by the substantively inclined, and 

neither type usually pays the necessary attention to what the other is really doing. 
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