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I.		Introduction	

In previous reports in the present research report series it has been assumed that there 

exist a few, say less than a dozen, candidate taxometric indicators. Given one or more 

discriminative indicators the various theories developed can be used to estimate the 

parameters of the underlying latent situation (Meehl, 1965, 1968; Golden & Meehl, 

1973a). In this report it is shown that a theory is frequently needed for the initial selection 

of the discriminative indicators from a set of candidate indicators which can be quite 

large in size. 

The present theory provides for both indicator selection and parameter estimation and 

does this in an integrated fashion. An indicator is rejected if either (a) it is not 

discriminative enough or (b) it is not in adequate agreement with the assumptions 

required for the estimation of the latent parameters. Another theory with weaker 

assumptions than the consistency hurdles theory is also developed just for the selection of 

discriminative indicators. 

The central idea underlying the consistency hurdles theory is that indicators which are 

both discriminative and in agreement with the assumptions of the theory will behave 

consistently with each other in various ways. A series of consistency tests (see Golden & 

Meehl, 1973b for a general discussion) are used in a consecutive hurdles fashion; when 

an indicator fails a hurdle it is rejected at that point and the data contributed by that 

indicator are not used in the remaining calculations. The hurdles are repeatedly applied to 

each indicator until none of the remaining indicators fail any of them. 

II.  Development of the Consistency Hurdles Theory 

A random number generator was used to simulate responses (with values 0 and 1) of 

one thousand individuals, five hundred from a taxon and 500 from the non-taxon class, to 

each of fifteen dichotomous indicators such that for each pair of indicators the population 

within-taxon and within-non-taxon class phi-coefficients were zero. Analysis of these 

data will serve as an example of the method. The indicator parameters are given in 

Table 1. Note that nine items are extremely weak and six have marginal to substantial 

validities. 
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Table 1. Artificial data population item parameters 

Item Taxon mean Non-taxon mean Difference 

1 .364 .301 .063 

2 .400 .134 –.266* 

3 .696 .758 –.052 

4 .582 .251 .331* 

5 .887 .754 .133 

6 .899 .708 .191* 

7 .637 .258 .379* 

8 .515 .471 .041 

9 .625 .371 .244* 

10 .844 .481 .363* 

11 .268 .201 .067 

12 .667 .572 .095 

13 .737 .809 –.072 

14 .625 .557 .072 

15 .902 .797 .105 

*Difference between taxon and non-taxon class means is large 

enough for item to have at least marginal validity. 
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The method proceeds as follows: 

A)  Let yi denote the Bernoulli item, i = 1, 2, …, n and xi the key formed by summing 

the n – 1 other items; i.e., 

 

  

x
i
= y

jj =1
( j ≠ i)

n
∑   

For each item, using the key xi as the “input” variable and an item yi as the “output” 

variable, we can create the function 

   yd (x) = ya (x)− yb(x)   

where   ya  is the mean on y of those cases lying above a cut x on the input key and   yb  is 

the corresponding quantity for below the x-cut. It will be shown that we can require that  

   
max yd (x){ } > .10 =δ1 . (c1) 

Assume that   ysx  and   ynx , the within taxon and non-taxon class regression functions are 

each constant for all x. it is easily shown that 

  
yd (x) =

Hs (x)
Na (x)

−
Ms (x)
Nb(x)

ys =
Hn (x)
Nb(x)

−
Mn (x)
Na (x)

yn

 
 

where Hs(x) and Ms(x) are the numbers of hits and misses among the taxon members, 

Hn(x) and Mn(x) are the corresponding quantities for the non-taxon class, and Na(x) and 

Nb(x) are the total numbers above and below a cut score x (Meehl, 1968). It would be 

reasonable to assume that for non-truncated taxon and non-taxon class distributions 

intersecting in only one point that as x → xmax, 

 
  

Hs

Na

→1,
Ms

Nb

→ P,
Hn

Nb

→1− P, and
Mn

Na

→ 0
 
, 

where P is the base-rate of the taxon, likewise as x → xmin, 

 
  

Hn

Nb

→1,
Mn

Na

→1− P,
Hs

Na

→1, and
Ms

Nb

→ 0  . 
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It follows that 

 
  
max yd (x){ } >max lim

x→xmax

yd (x) , lim
x→xmin

yd (x){ }
 

 
  
=max (1− P)( ys − yn ) , P( ys − yn ){ }≥ 1

2
( ys − yn )  . 

Experience has shown that it is generally true that   yd (x)  is a convex downward 

parabolic shaped curve with a local maximum between xmin and xmax near the hitmax cut1 

when the discrimination by the key and the output item is strong enough. Analytical 

demonstration of this fact has unfortunately proved elusive so far. However, a Monte 

Carlo study of   yd (x)  which will be given in a forthcoming report in this series, does 

indicate that discriminative items which are weakly correlated with the input key within 

the taxon and non-taxon class have   yd (x)  curves which are concave downward. Also, it 

appears to be true and will be demonstrated below that items for which   ys − yn < .20  are 

too weak for the method to give accurate parameter estimates. Detection of these weak 

items can be partially accomplished by the requirement max{  yd (x) } > .10. The results 

obtained for the example are given in the table below. It is necessary to require the 

frequencies Na and Nb to be large enough to avoid selecting maxima not associated with 

the hitmax cut but resulting from sampling error. So far it has been found adequate to 

restrict Na and Nb to be fifty or more. 

Items 3, 5, 8, 12, 13 and 15 are deleted by consistency test c1. If the   yd (x)  curves 

are smoothed by a method such as moving averages then items 1, 2 and 11 are also 

deleted. 

  

																																																								
1	 The relationships between max{  yd (x) } and the hitmax cut is developed in PR-68-4, 

p. 14ff [section “[Quasi]-Proof”]. (The hitmax cut is defined to be the cut on the input 
key which maximizes the total number of hits; in other words, it is the abscissa of the 
point of intersection of the taxon and non-taxon (unrelativized) frequency curves.)	
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The local maximum of the mean above less the 
mean below for each of fifteen artificial data items 

Item max{  yd (x) } 

1 .12 

2 .19 

3 .02 

4 .22 

5 .08 

6 .19 

7 .18 

8 .08 

9 .24 

10 .22 

11 .11 

12 .07 

13 .05 

14 .11 

15 .08 

 

B)  After deletion of k items by c1 then the xi keys are recalculated using the n – k – 1 

items for each. When condition c1 is applied again no items are deleted in the example. 

The interval of xi associated with max{  yd (x) } for each output item yi is found; denote 

this estimated hitmax interval value by hi and the mean of the hi values by  h . The next 

hurdle then is to requlre that 

   hi − h <δ2 . (c2) 

It appears difficult to show mathematically that δ2 can be safely fixed at any adequately 

low value. It is easily shown that if items are perfectly independent within the taxon and 

non-taxon class, then the hi values will not deviate by more than one interval because of 

the fact that the various input keys are not composed of exactly the same items and thus 
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have different distributions. The effects of other sources of deviation of the hi values are 

more difficult to evaluate. However, a crudely derived value for δ2, 15% of the range of 

the input key, has worked well on both artificial and real data. This parameter has to be 

studied further but it appears that normally it can be set at one or two interval widths after 

weak items have been deleted. In the example, the hitmax interval is estimated to be 2 for 

all 9 items remaining except #4, where it is estimated to be 3. By the “15% of the range” 

rule no items are deleted. 

C)  The manifest tail means can be used as estimates of   ysi  and   yni  (again using key 

xi as the input variable). The idea here is to take enough of the tails to avoid excessive 

sampling error but not so much as to obtain excessive bias due to the contaminating taxon 

or non-taxon class. So far, the crude rule of making each tail range be about 25% of the 

total range has worked quite well. There can be considerable distribution overlap in the 

tails; certainly, the tails need not be “exposed flanks.” The use of non-exposed flanks 

causes   ŷsi  to be too small and the   ŷni  to be too large if yi satisfies the independence 

assumption. It usually happens that the output item yi is somewhat positively correlated 

with xi within the taxon and the non-taxon class and this correlation tends to 

counterbalance the non-exposed flank biasing effect. In order that an item be 

discriminative enough it can be required that 

   ŷsi − ŷni >δ3  (c3) 

where   ŷsi  and   ŷni  are tail estimates. Since   ŷsi − ŷni  can be as low [as] .20 and the item 

still be considered discriminative enough (as will be shown below) and since   ŷsi  will 

tend to be too small and   ŷni  will tend be too large but not so that   ŷsi − ŷni < .10  

(according to c1) it would seem appropriate to set δ3 = .15. As shown in the table below, 

consistency test c3 eliminates items 1, 11 and 14, each weakly discriminative, thereby 

leaving items 2, 4, 6, 7, 9 and 10. Comparison of these estimates with true values given in 

Table 1 shows that generally these estimates are within .05 of the true values. 

  



	 	 	 	8	

Tail estimates of the taxon and non-taxon  
class parameters for the remaining nine items 

 Item 
  ŷsi    ŷni    ŷsi − ŷni  

  1. 1 .378 .246 .132 

  2. 11 .276 .202 .072 

  3. 14 .620 .536 .084 

  4. 2 .402 .169 .233 

  5. 4 .559 .218 .341 

  6. 6 .877 .717 .160 

  7. 7 .601 .259 .342 

  8. 9 .557 .406 .151 

  9. 10 .818 .532 .286 

D)  In the hitmax interval cases are an approximately 50% mixture of the taxon and the 

non-taxon class so it is true that 

 
   
1
2

ŷsi +
1
2

ŷni ! ŷhi   

where	h	denotes	the	hitmax	interval.	Hence,	we	can	require	that	

	
  

1
2

ŷsi +
1
2

ŷni − ŷhi <δ4 	 (c4)	

where the parameter δ4 will not be zero because (a)  yh  is in error due to sampling, 

(b) the hitmax interval has not been correctly determined, (c) the estimates   ŷsi  and   ŷni  

are in error, (d) the taxa proportions in the interval are not exactly .50 due to coarseness 

of intervals and (e) the assumption of the theory (  ŷsi  and   ŷni  are constant for all i) is 

not true. Let ε denote the difference between the theoretical value in terms of the true 

latent parameter values and the true population value hitmax compound mean. Dropping 

the subscript i, we have 

   ε = Ph ysh + (1− Ph )ynh − yh   

where h denotes the hitmax interval and all parameters are the true values. Then 
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dε = ∂ε

∂Ph

dPh +
∂ε
∂ysh

dysh +
∂ε
∂ynh

dynh +
∂ε
∂yh

dyh   

and 

    Δε ! ysh − ynh( )ΔPh + PhΔysh + 1− Ph( )Δynh − yh   

where Δ denotes a small error in the parameter. Under the assumption given in (e) above, 

and with fine enough intervals we have  

 
   
Δε ! ys − yn( )ΔPh +

1
2
Δysh +Δynh( )−Δyh . 

Usually we are able confidently to assume that   ys − yn < .6  and ΔPh < .25. In the 

second term,   Δysh  and   Δynh  will tend to have opposite signs when the tail estimation 

method is used; each of   Δysh  and   Δynh  should be less than .10 and their algebraic 

sum less than, say, .06. The third term represents sampling error; assuming that the 

number in the hitmax interval is at least 100 (keys are quite short at this stage) it follows 

that one probable error unit in the estimate of  yh  is less than .05. Thus we have 

	 Δε ≤.15 + .03 – (± .10); 

hence, it would seem reasonable to set δ4 = .30. In the artificial data example, no items 

are deleted by c4. 

E)  Since items were eliminated by c3 we now recalculate the keys xi and apply 

tests c2, c3, and c4 again. In the example all items pass these tests this time except 

item 6 on c2 (this is the weakest of the remaining items). Recalculation of the xi 

and application of tests c2, c3, and c4 eliminates item 4 (a strong item). Finally, the next 

cycle does not eliminate any of the remaining four Items (2, 4, 9 and 10). 

F)  The final tail estimates for each of the four remaining items are given in Table 2 and 

can be used to solve for the base-rate P by  

  Pŷsi + (1− P) ŷni = yi   or 
  
P = ŷi − ŷni

ŷsi − ŷni

 .  
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Item # 

 
non-taxon  taxon 

 
estimate of 
base-rate  estimate true value error  estimate true value error  

2  .128 .134 –.006  .364 .400 –.046  .680 

4  .292 .251 .041  .591 .582 .009  .626 

9  .374 .371 .003  .614 .625 –.011  .603 

10  .519 .481 .038  .830 .844 –.014  .557 

       
Average .617 

       Corrected for bias .574 

       True value .582 

Table 2. Item parameter and base-rate estimates for artificial data example (N 
= 1000) 

 

G)  The error in Pi,   ΔPi = P̂i − P , resulting from using the above equation is a function 

of  Δyi  (sampling error),   Δyni = ŷni − yni  and   Δysi = ŷsi − ysi : 

 

   

ΔPi !
1

ysi − yni

Δyi −
yi − yni

ysi − yni( )2 Δysi +
yi − ysi

ysi − yni( )2 Δyni  . 

If it is assumed that   Δyci = Δyni = −Δysi  we have 

 

  

ΔPi =
Δyi

ysi − yni

+
2Pysi +2(1− P)yni − ysi − yni

ysi − yni( )2 Δyci   

which simplifies to 

 
  
ΔPi =

Δyi

ysi − yni

+
(2P−1)
ysi − yni( )

Δyci  . 

It is reasonable to assume that   Δyci < .05  and that 
   
Δyi < 2 (.5)

1000( )1/2 ! .03 . To get some 

idea of the size of variation in Pi values for which to generally allow, let P = .60, for 

example and it follows that 

 
  

−.04
ysi − yni

< ΔPi <
+.04

ysi − yni

  

which results in limits of ±.2 for   ysi − yni = .2 and limits of ±.1 for   ysi − yni = .4. If we 

have n items, each with   ysi − yni =   ys − yn  and   Δyci = Δyc  and estimate P by taking the 
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average of the n individual estimates, then 

 
  
ΔP = P̂− P = ΣP̂i

n
− P =

Σ P̂i − P( )
n

=
ΣΔPi

n
  

 
   
!

ΣΔyi

n ys − yn( )
+
Σ 2P−1( )Δyc

ys − yn

 . 

The expected value of ΔP is given by 

 
  
E ΔP( ) =

2P−1( )Δyc

ys − yn

.  

which shows that there is a bias in the estimation of P by this procedure if   Δyc ≠ 0. 

The above formula for E(ΔP) was used to obtain the following table which gives the 

bias in the estimation of P for various values of   ys − yn 	 and P when   Δyc = .05.  

The expected error in the base-rate estimate when   Δyc
= .05  

for various values of P and   ys − yn
 

the true 
value of P 

the true value of the difference in the item parameters   ys − yn
 

.2 .3 .4 .5 

.5 0.00 0.00 0.00 0.00 

.6 .05 .03 .02 .02 

.7 .10 .07 .05 .04 

.8 .15 .10 .07 .06 

.9 .20 .15 .10 .08 

	

Thus, the bias can be very large and one is clearly behooved to make use of a correction 

term. The general form of the bias term for n items is 

  

2P−1
n

Σ
i

Δyci

ysi − yni

 

or	

 
  

2P̂−1( )Δŷc

n
Σ
i

1
ŷsi − ŷni

 . 
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Taking   Δyc = .05 and using the parameter estimates of the example, this expression has 

the value of .043; thus the approximate unbiased estimate is .574. The sampling variance 

of ΔP which only takes into account the sampling error of   ŷi  iS given by 

 

  

varΔyi

n2 ysi − yni( )2∑ =
var ŷi

n2 ysi − yni( )2∑ ≤
.25
Nn

1

ysi − yni( )2∑  . 

If it is assumed for simplicity that   ys − yn  is the same for all items, then a conservative 

95% confidence interval for the resulting sampling standard deviation is 

 
  
±

1
N 1/2n1/2 ys − yn( )

  

and from this expression we get the very important result that it is clearly more important 

to have a few strong items rather than many weak items. For example, 5 items with 

  ys − yn = .4 gives a better estimation of P than 16 items with   ys − yn = .2. 

The sampling standard deviation of ΔP which takes into account the sampling error in 

  ŷi ,   ŷsi  and   ŷni  can be derived as follows. From above we have 

 
 
ΔP = ΣΔPi

n
 and 

  
Pi =

ŷi − ŷni

ŷsi − ŷni

 . 

Thus	

 
  
var ΔP( ) =

Σvar ΔPi( )
n2   

 
  
var ΔP( ) =

var ai

bi

⎛

⎝
⎜

⎞

⎠
⎟

n2   

where   a i = ŷi − ŷni  and   bi = ŷsi − ŷni . It will be necessary to assume that   ŷi ,   ŷsi  and 

  ŷni  are mutually independent and that   ŷi − ŷni  and   ŷsi − ŷni  are independent even 

though this is not strictly true. The error resulting from this assumption would not seem 

to be of significant size but an analytical demonstration is not provided. From the 

assumption it follows that the expected value of the quotient 
 

ai

bi

 is the quotient of the 
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expected values of ai and bi, or 

 
 
E ai

bi

⎛

⎝
⎜

⎞

⎠
⎟=

E ai( )
E bi( )

=
ai

bi

 . 

Now we have 

 
  
var

ai

bi

⎛

⎝
⎜

⎞

⎠
⎟= E ai

bi

− E ai

bi

⎛

⎝
⎜

⎞

⎠
⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

2

  

 
  
= E

a2
i

b2
i

−
a 2

i

b 2
i

  

 
  
=

var ai( )+ ai
2

var bi( )+bi
2 −

ai
2

b 2
i

 . 

Since	

 

   

var(ai ) !
ŷi 1− ŷi( )

N
+

ŷni 1− ŷni( )
1
4

N
 , 

 

   

var(bi ) !
ŷsi 1− ŷsi( )

1
4

N
+

ŷni 1− ŷni( )
1
4

N
 , 

    ai ! ŷi − ŷni ,   and      bi ! ŷsi − ŷni  

the	resulting	expression	for	var(ΔP)	is	

 

  

1
n2

ŷi 1− ŷi( )+4 ŷni 1− ŷni( )( )+ N ŷi − ŷni( )2

4 ŷsi 1− ŷsi( )+4 ŷni 1− ŷni( )( )+ N ŷsi − ŷni( )
2

⎧
⎨
⎪

⎩⎪i
∑ −

ŷi − ŷni( )2

ŷsi − ŷni( )
2

⎫
⎬
⎪

⎭⎪
  

Suppose P = .5, N = 1000,   ŷi = .5 and   ŷsi − ŷni = .2 or that all items are marginally valid; 

then 

 
   
var ΔP( ) = 1

n2 i n i
.25+ .96+10
.96+ .96+40

−
10
40

  

 
  
=

.017
n

    or 

 
  
SD ΔP( ) = .130

n
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which is .065 when n = 4, or .043 when n = 9 and .032 when n = 16. We see that for 

marginally discriminative items and a sample size of 1000 it is necessary for the twenty 

items to pass all the hurdles for the base-rate estimate to be accurate enough for most 

purposes. If items discriminate each by as much as .40 then 
  
var ΔP( ) = .004

n
 or 

  
SD ΔP( ) = .06

n
 which is only .03 when n = 4.	

III.  Empirical Trials of the Theory 

Several empirical trials in which MMPI items are used to identify the sexes give an 

idea of how well the theory works with real data in terms of sample size, discrimination 

power of the items, inter-item dependency within taxa and the proportion of the items in 

the initial item pool which are discriminative. Two samples of 430 men and 720 women 

were used to obtain 15 items that discriminate by .30 to .40 (difference in the item mean 

plus-rates), 12 by .20 to .30, 15 by .10 to .20 and 33 by –.10 to +.10 for a total of 75 

items. Twenty-seven of the items can be taken as discriminating adequately enough to 

serve as useful taxonomic indicators (.20 or more difference). 

It is of interest first to mention the results of applying other well-known taxometric 

theories to the 75 items. The hierarchical nearest-neighbor method developed by Ward 

(1963) was used with the 75 items and the method failed to come close in correct 

identification of the sexes at any stage of the iterative procedure. Factor analysis, using 

both the principle components and varimax rotation methods, of the compound 

distribution failed to segregate the discriminative items in any way. Also, inverted factor 

analysis developed by Stephenson (1938) failed to produce factors which were loaded 

with mostly members of just one sex. It may be thought that since only 27 of the 75 items 

were adequately discriminative the data were concocted to be too tough for any 

taxometric method. But we would contend in reply that this would usually be a rather 

high concentration of valid candidate indicators at least in preliminary stages of a 

taxonomic investigation in personality measurement. 

When the consistency hurdles method was applied it was found that 28 of the items 

produced  yd  curves that had local maxima which were sufficient in size and were well-
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defined. Further analysis of the 28 items by the method eliminated all but 7 for which the 

male and female item plus-rates were estimated fairly accurately (usually within .10) and 

the base-rate was estimated to be .670 which compares well enough with the true value of 

.630 (see Table 3). While there is some room for improvement in the method in that it 

retained less than one-fourth of the actually valid items it did provide estimates of the 

base-rate and item plus-rates which yielded nearly 90% correct classification of 

individuals according to biological sex by application of Bayes’ Rule. 

 

Item 

 
females  males 

 
estimate of 
base-rate  estimate true value error  estimate true value error  

1  .48 .69 –.21  .08 .06 .02  .74 

2  .67 .74 –.07  .24 .31 –.07  .68 

3  .44 .55 –.11  .14 .15 –.01  .71 

4  .53 .54 –.01  .04 .11 –.07  .58 

5  .63 .77 –.14  .48 .48 .00  .98 

6  .33 .34 –.01  .08 .27 –.19  .90 

7  .74 .69 .05  .36 .55 –.19  .69 

      
Average (corrected for bias) .67 

       True sample value .63 

Table 3. Item parameter and base-rate estimates for the seven items which remained 
in the seventy-five item male-female trial (N = 1150) 

 

If only the 15 most discriminative items are used then each of the above methods do 

result in nearly 90% correct identification of the sexes. It should be noted that the 

consistency hurdles method does provide more information in that the item plus-rates are 

estimated quite accurately (usually within .05) for each sex even when a compound 

sample size as small as 200 is used (see Table 4). 

While it was found that the consistency hurdles method worked very well for samples 

as small as 100 when the fifteen most discriminative items were used, it was also found 

that the sample size had to be at least 500 for the 75 item trial. 
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Item 

 
females  males 

 
estimate of 
base-rate  estimate true value error  estimate true value error  

1  .66 .64 .02  .05 .08 –.03  .53 

2  .37 .30 .07  .09 .10 –.01  .57 

3  .87 .90 –.03  .41 .50 –.09  .55 

4  .84 .74 .10  .42 .44 –.02  .46 

5  .91 .84 .07  .46 .40 .06  .48 

6  .87 .78 .09  .25 .36 –.11  .54 

7  .54 .52 .02  .05 .14 –.09  .56 

8  .47 .38 .09  .08 .08 .00  .55 

9  .80 .84 –.04  .30 .36 –.06  .57 

      
Average (corrected for bias) .527 

       True sample value .500 

Table 4. Item parameter and base-rate estimates for nine items that remained in the 
small sample, fifteen strong discriminator items (mean difference in item parameters 
is greater than .30) male-female trial (N = 200) 

 

Item 

 
females  males 

 
estimate of 
base-rate  estimate true value error  estimate true value error  

1  .58 .60 –.02  .35 .36 –.01  .68 

2  .79 .66 .13  .17 .38 –.21  .63 

3  .79 .66 .13  .31 .46 –.15  .59 

4  .73 .61 .12  .17 .39 –.22  .63 

5  .83 .73 .10  .29 .48 –.19  .65 

6  .81 .77 .04  .41 .48 –.07  .63 

7  .72 .61 .11  .17 .37 –.20  .64 

      
Average (corrected for bias) .606 

       True sample value .630 

Table 5. Item parameter and base-rate estimates for the seven items that remained in 
the twelve moderately (mean difference in item parameters between .20 and .30) 
discriminative item male-female trial (N = 1150) 

 

When the set of twelve items that discriminate between .20 and .30 was used for the 

total group of 1150 the consistency hurdles estimates were marginally accurate (usually 

within .10 to .20) while the base-rate estimate of .606 was close to the true value of .630 

(see Table 5). The results of using the items that discriminate by .10 to .20 were 
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marginally acceptable at best. The item parameters sometimes were substantially in error 

and the base-rate estimate of .558 is a bit off the mark, the true value being .630 (see 

Table 6). 

Item 

 
females  males 

 
estimate of 
base-rate  estimate true value error  estimate true value error  

1  .80 .61 .19  .22 .48 –.26  .59 

2  .91 .87 .04  .69 .69 .00  .53 

3  .55 .50 .05  .23 .32 –.09  .62 

4  .44 .38 .06  .19 .22 –.03  .54 

5  .87 .71 .16  .39 .61 –.22  .60 

6  .76 .55 .21  .13 .46 –.33  .62 

7  .90 .75 .15  .44 .60 –.16  .57 

      
Average (corrected for bias) .558 

       True sample value .630 

Table 6. Item parameter and base-rate estimates for the seven items that remained in the 
fifteen weakly discriminative (mean difference in item parameters between .10 and .20) item 
male-female trial (N = 1150). 

 

Another tough test of the method gives some idea about the limit of the method’s 

detection power in terms of the strength of the indicators. Two diagnostic groups of male 

inpatients diagnosed as schizophrenic and male inpatients with other psychiatric 

diagnoses were used. Eight items were found that discriminated between the two groups 

by .10 to .20 and one by .26. All of the items were eliminated except two for which the 

item plus-rates were estimated to within .10 points. From these two items the base-rate of 

the schizophrenics was estimated to be .35. The true sample value was .28 but it should 

be noted that some of those diagnosed as not schizophrenic are (presumably) 

schizophrenic, whereas the other diagnosis error, where a truly non-schizophrenic is 

diagnosed as schizophrenic probably does not occur nearly as often. Thus the .28 value is 

probably too low for the proper taxonomic base-rate and the estimated base-rate is larger 

than the schizophrenic base-rate as it should be. 
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IV.  Discussion 

From the empirical trials it appears that for parameters to be estimated within .05 on 

the average it is required that there be a small number (say, five to ten) items that are 

quasi-independent within the taxon and the non-taxon class and that discriminate by .20 

or more. Also, the sample size must be five hundred or larger depending on the portion of 

the initial item pool which is discriminative. 

Five quasi-independent and discriminative items allow for accurate enough 

classification of individuals. It can be shown numerically that five independent items that 

discriminate by .20 will produce a misclassification rate via Bayes’ Rule which is only 

.20 for equal base-rates. For five .30 difference items the misclassification rate is only .10 

and for five .40 difference items it is just .05. A few powerful quasi-independent items 

then can [work] better than a larger batch of weak ones. This should perhaps not be 

surprising, despite the opposite leaning in traditional psychometrics, when one considers 

how powerful diagnostic syndromes have been employed in medicine, including 

psychiatry. Physicians have for centuries found it more useful to identify a few “strong 

signs” of each nosological entity than to “summate scores” of numerous feeble ones. 

With these results it is not alarming that the method retained seven or fewer items for the 

estimation of the parameters and the classification of the individuals in each of the 

reported empirical trials. 

An artificial data trial shows that even if items are correlated within the taxon and the 

non-taxon class as high as .25, which is probably quite high for any taxon detectable with 

MMPI items, then parameters are still estimated accurately. The data were generated by 

the method given in Golden et al. (1974b) such that the 10 items discriminated by .50 and 

the base-rate was .500, the sample size being 1000. The item parameters were estimated 

to within .05 on the average and the base-rate was estimated perfectly to the third digit, 

.5003 (see Table 7). Of course, this trial illustrates that there is robustness with respect to 

the independence assumption only for strongly discriminative items and more extensive 

Monte Carlo study is required. But it is interesting to note that a preliminary trial in the 

attempted detection of the schizotype taxon (Meehl, 1962) indicates that there are a dozen 

or more items that discriminate by nearly .50 or more. Pending further Monte Carlo study 

of the method’s robustness with respect to the assumptions, mainly that of independence, 
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it would appear that there probably is adequate robustness for the usual situation in 

psychopathology taxometrics. 

	

Item	

	
taxon	 	 non-taxon	

	
estimate	of	
base-rate		 estimate	 true	value	 error	 	 estimate	 true	value	 error	 	

1	 	 .75	 .75	 .00	 	 .21	 .25	 –.04	 	 .49	

2	 	 .78	 .75	 .03	 	 .17	 .25	 –.08	 	 .51	

3	 	 .78	 .75	 .03	 	 .25	 .25	 .00	 	 .49	

4	 	 .75	 .75	 .00	 	 .16	 .25	 –.09	 	 .54	

5	 	 .78	 .75	 .03	 	 .21	 .25	 –.04	 	 .48	

6	 	 .81	 .75	 .06	 	 .26	 .25	 .01	 	 .49	

7	 	 .74	 .75	 –.01	 	 .21	 .25	 –.04	 	 .53	

8	 	 .97	 .75	 .22	 	 .24	 .25	 –.01	 	 .49	

	 	 	 	 	 	
Average	(corrected	for	bias)	 .5003	

	 	 	 	 	 	 	 True	sample	value	 .500	

Table	7.	Item	parameter	and	base-rate	estimates	for	the	eight	items	that	
remained	in	the	artificial	data	trial	where	items	were	highly	correlated	(r	=	.25)	
within	the	taxon	and	the	non-taxon	class	(N	=	1000)	

	

It might be mentioned here that the reason an item is removed from the input key 

when in the role of an output indicator is due to the requirement of independence between 

the output and input indicators. If an item were included in the input key when there are 

as few as, say, five items remaining this correlation could become substantial. Of course, 

the increase in programming complexity and the amount of calculation is enormous. 

It is hoped that when there is not adequate robustness for accurate enough estimation 

that all of the items are deleted. If the Monte Carlo study shows this not to be true in 

certain situations then the method will require modification probably in the form of 

adding more consistency tests. 

There are two key ideas to the present form of the method: (1) the  yd  curve has a 

maximum near the hitmax cut when there is a low enough correlation and (2) the input 

key, while possibly consisting of highly dependent items still discriminates adequately 

between the taxon and the non-taxon class and can be used to begin a bootstrapsing 

process. Although it has not been rigorously shown that (1) is true it has been 
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investigated somewhat by Monte Carlo study and the result appears to always hold when 

correlations are low enough. When the correlations become too high (about .50) the 

method dramatically fails in producing a  yd  curve that has a local maximum in that the 

curve is concave upward. The complete results of the study will be given in a 

forthcoming report in this series. It could be that the consistency hurdles method is 

otherwise robust to the strong assumption of independence and that the appearance of a 

well-defined maximum of the curve is too tough a requirement which eliminates many 

good items. Fortunately, the more discriminative items will have better defined maxima 

than the less discriminative ones for the same amount of dependence; thus it is more 

likely that an item rejection mistake by the  yd  maximum requirement be made on the 

weaker items. 

When the initial item pool contains only 10 to 30% items that discriminate by .20 or 

more then the latent distributions on the input key are not very well separated and the  yd  

maximum is not very well-defined as when the distribution separation is, say, two or 

more intra-taxon sigma units between the latent means. Such a faintly defined maximum 

is only reliably detectable with a large enough sample. Thus the lower the portion of 

discriminative items in the initial pool, the larger the sample required. The male-female 

trial described above showed that when 27 of 75 Items were discriminative by .20 or 

more then a sample size of at least 1000 was required. Under such considerations it 

would certainly seem advantageous to smooth the  yd  curve. Scarborough (1962) gives 

the rationale for smoothing curves so that each observation is weighted by the inverse of 

the probable error of measurement. That is, it is necessary to have an estimate of the 

sampling error of   yd (x)  at each value of x. Since   yd (x) = ya (x)− yb(x) , 

   var yd (x) = var ya (x)+ var yb(x)   

 
  
=

ya 1− ya( )
Na

+
yb 1− yb( )

Nb

  

and we have 

  
SD yd (x)( ) = ya 1− ya( )

Na

+
yb 1− yb( )

Nb

 . 
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From this formula, it is seen that the sampling variance is larger in the extremes of the distri-
bution. Thus, it is best to have the hitmax near the middle of the distribution and, fortunately, 
this should nearly always be the case. Examples of smoothed  yd  curves are given in Figure 1. 

The method of moving averages (Kendall, 1951), which makes use of interlaced least-squares 
fitted polynomials (degree three was used in the examples), was used with a weighting function 

  1/ SD yd (x)( )  according to a method developed by Forsythe (1957). 

 

 

input variable x 

Figure 1. Typical   yd (x)  curves for three moderately discriminative items in the 75 item male-female example 
(N = 1150). The curves were smoothed by the moving averages method. Y-axis is mean	above	less	the	
mean	below	on	output	variable	

  yd (x)( ) 	
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Some items even though discriminative are rejected by the method because of high 
intra-taxon or intra-non-taxon-class correlation or because of the nature of the particular 
initial item pool used. These items are easily retrieved by comparing the manifest means 
of the two criterion groups formed by classifying individuals as members of the taxon or 

not. Let these two criterion group manifest means for an item be   ycs  and   ycn , let Ps be 

the proportion of those individuals classified as members of the taxon who actually are in 
the taxon, and let Pn be the similar quantity for the non-taxon class. The quantities Ps and 
Pn can be estimated by a procedure given in a previous report (Golden and Meehl, 
1973a). It follows that 

   Ps ys + 1− Ps( ) yn = ycs  and 

   1− Pn( ) ys + Pn yn = ycn  

where   ys  and   yn  are latent taxon and non-taxon class means and are the two unknowns 

in this pair of simultaneous equations. The above pair of equations can be applied to all 

the items in the initial pool and the validity as measured by, say   ys − yn , can be 

determined. The recaptured discriminative items and the originally retained items can be 
used in the consistency hurdles method again for possibly improving parameter estimates, 
development of discriminative keys, further confirmation of the solution obtained with the 
original item “seed” and in identifying and studying the nature of the taxon. 

Since the method normally ends up with ten or less items, the recapture procedure 

allows for the possibility of selecting enough items to develop keys. These keys can be 

used with the maximum-covariance theory (Golden & Meehl, 1973a) and the normal 

theory (Golden et al., 1974) for further corroboration tests of the detected taxon as these 

other taxometric methods are based on different assumptions. 

The manifest joint proportions for the sample should be approximately equal to those 

calculated from the estimates of the base-rate and the latent item means. For example, for 

three items x, y and z it can be shown that 

 PPsxPsyPsz + (1 – P)PnxPnyPnz = Pxyz 

 PPsxPsy + (1 – P)PnxPny = Pxy 

 PPsxPsz + (1 – P)PnxPnz = Pxz 

 PPsyPsz + (1 – P)PnyPnz = Pyz 

under the condition of independence within taxon and non-taxon class. 
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he allowable differences between the observed and the theoretical values of the joint 

proportions can be derived by expressing the exact differential of the difference in terms 

of the partial derivatives of the parameters as was done above to obtain Δε. Thus we have 

a final consistency test for those items retained by the method. 

V.  A Method for the Selection of Discriminative indicators 

Probably the method can be most improved by developing a method of initial item 

selection so that the concentration of discriminative items is at least as high as, say, 50%. 

One such method results from the fact that for an item to be discriminative it is necessary 

that the mean of the item when used as an output variable be a monotonically increasing 

function of the input variable value. In the 75 male-female item set, most of the 

discriminative items can be distinguished from the rest by simply observing the presence 

or absence of the monotonicity by eye (see Figure 2). However generally a more 

sophisticated analytical method is required; such a method is developed below. 

Consider a set of candidate discriminative indicators, xi, i = 1, 2, 3, …, n, each 

dichotomous. As before, let one of the indicators be considered as an output variable y 

while the sum of the remaining n – 1 indicators is the input variable x = (Σxi) – y. Assume 

that the mean of the taxon members with score x is given by 

   ys (x) = msx+bs   (A1) 

and	that	for	the	non-taxon	class	members	by	

   yn (x) = mnx+bn  (A1) 

Thus	   ys (x)− yn (x) = (ms −mn )x+bs −bn > 0 	 for	all	x	if	an	item	is	discriminative.	The	

problem	is,	then,	given	an	observable	function	of	the	compound	distribution	such	as	

the	compound	mean	   y(x) ,	to	estimate	the	values	of	the	latent	parameters	ms,	mn,	

bs,	and	bn	under assumption A1. It is a simple matter to observe that 

 
  
lim

x→xmax

y(x) = msn+bs  

 
  
lim

x→xmin

y(x) = bn   



	 	 	 	24	

 

input variable (x) 

Figure 2. Typical monotonically increasing   y(x) 	 curves for three discriminative items in the 75 item male-
female example (N = 1150). The curves were not smoothed. Y-axis is the compound manifest mean	of	
output	variable	   y(x)( )  

 

and that 

 
  
lim

x→xmax

y(x) = ms  and 

 
  
lim

x→xmin

y(x) = mn   

if the taxon and non-taxon class density functions are such that they go to zero at xmax and 

xmin respectively as they normally do. In other words, direct observation of boundary 

conditions provides for estimation of the latent parameters,   ysx  and   ynx  for all x. 
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If p(x) is the proportion of the individuals which are taxon members with scores x 

then 

   p(x)ys (x)+ 1− p(x)( ) yn (x) = y(x)   

or 

 
  
p(x) =

y(x)− yn (x)
ys (x)− yn (x)

 . 

Letting φ(x) be the compound density function for the input variable, it follows that the 

base-rate of taxon members (P) is Σφ(x) p(x), the input means are   xs = Σxφ(x)p(x) and 

  xn = Σxφ(x) q(x) and the output taxa means are   ys = msxs +bs  and   yn = mnxn +bn . For an 

indicator to be discriminative it is required that   ys − yn >δ where δ is set to be adequately 

large, say, .20 as mentioned several times above. 

It should turn out that    Pxs +Qxn ! x  where  x  is the observable compound mean 

on x. Presumably, errors in the estimation of bs, bn, ms and mn would cause errors in the 

p(x) which would cause an error in P and/or   xs  and   xn  thereby causing the above 

condition not to obtain. Letting   Δxs ,   Δxn  and ΔP denote errors in the parameter 

estimates we see that since 

 
  
dx = ∂x

∂xs

dxs +
∂x
∂xn

dxn +
∂x
∂p

dP   

we have 

    Δx ! PΔxs +QΔxn + xs − xn( )ΔP  .  

It remains to be seen what reasonable values for   Δxs ,   Δxn  and ΔP are. It is hoped that 

the method produces a discrepant estimate of the manifest compound input mean for 

those items which are incorrectly estimated to have values of   ys − yn  larger than δ. 

The item selection method thus relaxes the independence assumption in the 

consistency hurdles theory to one of linear regression of the output item on the input 

scale within the taxon and the non-taxon class. For the method to work well it is 

necessary that the parameters of the linear regression functions be estimated from the 

tails of the compound distribution on the input scale. As when the tails are used in the  
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consistency hurdles method there are the problems of impurity in the tail and sample size 

in the tail. Unfortunately these two problems permit solution only at the expense of the 

other. It is hoped that Monte Carlo study and curve-smoothing techniques will provide 

for adequate simultaneous solution. Suffice it to say for now that when graphs of 

discriminative items are analyzed by eye with the aid of a ruler, the parameter estimates 

are not appreciably less accurate than those of the consistency hurdles method in the few 

trials run so far. 

VI.  Conclusions 

The consistency hurdles method gave sufficiently encouraging results in several 

empirical trials to indicate that further study is justifiable. 

The method is designed to meet two major requirements. First, to eliminate as early in 

the calculations as possible those indicators that are not behaving in a way that is 

consistent with both the assumptions of the theory and relations satisfied only if there is 

adequate discrimination. This requirement was seen as important since other taxometric 

methods generally fail to work when there are many non-discriminative indicators in the 

pool. Evidently, invalid indicators do not just get ignored by these methods but they 

cause the methods to malfunction. In psychopathology measurement, it is true that there 

are typically at least fifty per cent invalid indicators since apparently there are not 

adequate indicator selection methods. Second, [it is important] to choose indicators that 

behave consistently with assumptions so that they can be used to accurately estimate the 

latent parameters. 

It always is possible that we end up with valid and consistent indicators but for the 

wrong taxonomy. The method itself can never tell us when this happens. For example, 

the items of the social introversion scale (Si) of the MMPI were intended to be used as an 

empirical trial of the method in that there is no good reason to postulate an underlying 

taxon. While the desired result was that all (or nearly all) of the items would be rejected, 

this was not the case; eleven items were retained. However, it was fairly clear the taxon 

detected was schizoidia, not introversion, as the base-rate and item parameter estimates 

and individual classification were very similar to those obtained in another study which 

was explicitly designed to detect the schizoid taxon (Golden et al., 1974a). 
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It is hoped that Monte Carlo study will show that there are only 0, 1 or 2 indicators 

left out of an initial pool if and only if (a) there is not a dichotomous taxonomy or 

(b) there are not more than two of the indicators which are both adequately discriminative 

and in sufficient agreement with the assumptions of the method. In any event such a 

Monte Carlo study is required and it may indicate revision of the method. 

In the Monte Carlo study it will be interesting to study the effects of 

(a) the within-taxon and non-taxon class correlations, 

(b) differences between the taxon and the non-taxon correlation matrices, 

(c) the taxon base-rate, 

(d) the proportion of the original pool of candidate items which are  

discriminative, and 

(e) the number of taxa. 

The main desired result is that whenever items are found to behave consistently and are 

used to estimate parameters in the final step, the resulting estimates are accurate enough. 

That is, estimates are never produced which are too erroneous. In the event erroneous 

estimates are produced for any sort of artificial data it will be indicated that other 

consistency tests are required. Thus, the first desired result is that taxometric detection is 

never spurious and is accurate. The second desired result is that the method proves to be 

powerful enough in the detection of taxonomies. 

The present empirical trials do serve to indicate that the detection power of the 

method is its most attractive demonstrated feature.  

Finally, empirical trials should be used to test the power of the method for the 

avoidance of spurious taxonomic detection. Two possible examples of empirical non-

taxonomic variables which could be used for such trials are social introversion among 

normals and general intelligence among normals. 
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