
 

 

Reports from the Research Laboratories 

of the 

Department of Psychiatry 

University of Minnesota 

 

 

Detecting Latent Clinical Taxa, VII: 

Maximum Likelihood Solution and Empirical and Artificial Data Trials 

of the Multi-indicator Multi-taxonomic Class Normal Theory 1 

 

Robert R. Golden, Shirley H. Tyan 

and 

Paul E. Meehl 

 

Report No. PR-74-5 October 1974 

 

 

1 This Research was supported in part by grants from the Psychiatry Research Fund and the 

National Institute of Mental Health, Grant Number MH 24224 

 
pdf by ljy October 2006 

 – 1 – 



TABLE OF CONTENTS 

 

 I.  Introduction ......................................................................................................... 1 

 II.  The Maximum Likelihood Solution .................................................................... 4 

 III.  Artificial and Empirical Data Trials .................................................................... 5 

 IV.  Use of Probability Paper for Initial Guesses ......................................................11 

 V.  Multi-indicator Generalizations .........................................................................12 

 VI.  The Independence Assumption ..........................................................................19 

 VII.  The Normality Assumption ................................................................................20 

 VIII.  Development of Indicators .................................................................................24 

 IX.  Classification of Individuals...............................................................................32 

 X.  Consistency Tests ...............................................................................................34 

 
 

 – 2 – 



I.  Introduction 

In a previous research report in the present series, the minimum chi-square single 

indicator normal theory’s parameter estimation accuracy and taxon detection power in an 

empirical trial were both sufficient to encourage further study of the theory (Golden and 

Meehl, 1973a). It was also shown by analytical development in that report that the 

indicator latent distributions within the taxon and the nontaxon class on keys are quasi-

normal, which is the sole assumption upon which most of the normal taxometric theory 

rests, if they are sums of dichotomous items which are pairwise slightly correlated within 

the taxon and the nontaxon class. The only shortcoming of the minimum chi-square 

calculation method (see Meehl et al., 1969) is that it is very time consuming and expensive 

even on a high-speed computer. The maximum likelihood solution by Hasselblad (1966), 

besides providing for much quicker calculation, is not restricted to one taxon plus the 

nontaxon class, is amenable to a multi-indicator generalization, as shown in this report, 

and uses estimators that are known to have optimal properties. In the present report it is 

shown that results of several artificial and empirical data trials of the generalized 

maximum likelihood method are sufficiently encouraging to warrant further study of the 

method. 

The present taxometric theory, as others in previous reports is intended for the 

detection of ‘real’ empirical classes. When all the members of such an empirical class are 

considered to have the same etiology, such as the presence of a mutated gene, a germ  
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or a neural defect, whereas all non-members are considered not to have this etiology, then 

the class will be called a ‘taxon’ and the complement of the class will be called the 

‘nontaxon class’ or the ‘extra-taxon class.’ Previously developed theories in this series 

have allowed for only a single taxon and a single nontaxon class, the major reason being 

that work on the present methodological problem resulted from interest in testing a 

substantive theory concerning schizotypes and nonschizotypes (Meehl, 1962; 1965; 1973). 

Generally however, a taxonomy will consist of more than one taxon and, possibly, more 

than one nontaxa class. The present theory allows for this possibility under the assumption 

that the indicator distribution is quasi-normal within each taxon and within each nontaxa 

class as in the example in the figure below. It should be noted that by ‘nontaxon A class’ 

we would be referring to the union of classes B and C but by ‘nontaxa class’ we refer to B. 

The point is that in the present report it is continually necessary to refer to two kinds of 

empirical classes, in general, the taxon and the nontaxa class, and for this purpose we will 

use the term ‘taxonomic class.’ In the example below each of A, B and C is a taxonomic 

class, whereas the union of any of them pairwise or higher order is not (by definition). 
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The theory allows for several different taxonomic class orderings. For example, 

consider the possibilities when there are three taxonomic classes. If one were using the 

amount of blood sugar as an indicator then a diabetes taxon might be detected on the high 

end and a hypoglycemia taxon on the low end, the middle taxonomic class being normals. 

In psychopathology this taxon, nontaxa class, taxon pattern would potentially be likely 

when measures of bi-polar personality traits are used, such as extroversion-introversion, 

where each direction of extreme deviation is indicative of psychopathology. 

The case of two contiguous taxa might turn out to be illustrated by the normal-

neurotic-psychotic example where a number of different psychopathology measures 

possibly could be used. 

While it it intended that the term ‘taxonomic class’ is to refer to a real rather than 

fictional entity, the fact that it has proved difficult to demonstrate the existence of such 

taxonomic classes in psychopathology is illustrated by our need to resort to hypothesized 

examples above. Because of this difficult state of affairs, it is useful to remember that 

taxometric theory can only be required to detect the existence of a taxonomy and not 

necessarily to establish its essential nature. In the first stage of detecting existence, the 

theory can produce erroneous results of two kinds. First the theory may not be powerful 

enough to detect a truly existent underlying taxonomy. Second, and probably more 

important, the theory can produce spurious detections. The likelihood of this kind of error 

can be decreased substantially by using well-tested consistency tests (Meehl, 1965; 1973; 

Golden and Meehl, 1973b) which check the adequacy of the degree-of-fit of the theory. 

Several consistency tests are developed in section X. 
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II.  The Maximum Likelihood Solution 

An outline of the calculations of the method is give below; the interested reader is 

referred to the original article by Hasselblad (1966), as further analytical development is 

provided there. 

Suppose that there are n taxonomic classes denoted by the subscript j with 

distributions on an indicator x and the taxonomic class means, variances, and base-rates 

denoted by µj, σj and pj ( Σ
n

j=1
  pj = 1). Let x be divided into N intervals denoted by the  

subscript i such that the interval width is small compared to σj. Then let qij be the density 

of the jth taxon in the ith interval and let this be approximated by 

qij = 1
2 jπ σ

 exp{– (xi – µj)2/2σj
2}; 

also, let Qi be the compound density for the ith interval or 

Qi =  Σ
n

j=1
  qij pj . 

The only values that are known are the compound sample distribution interval 

frequencies fi, i = 1, 2, 3, … , N. Hasselblad shows that the maximum likelihood estimates 

of the unknown latent parameters can be found by the steepest descent iterative procedure 

which results in the following equations: 

µj =  Σ
N

i=1
  (fi /Qi) qij xi / ( Σ

N

i=1
   (fi /Qi) qij) , 

 

σj
2 =  Σ

N

i=1
   (fi /Qi) (x – µj)2 / ( Σ

N

i=1
   (fi /Qi) qij) , and 
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pj =  Σ
N

i=1
   (fi qij Pj / Qi) / ( Σ

N

i=1
  fi) . 

The iterative procedure begins with initial guesses of µj, σj and pj. It is not shown 

how accurate the initial guesses must be or if, indeed, convergence to the true values will 

necessarily obtain. Scarborough (1962) shows that the method converges whenever the 

following condition is met: Let the true value of a root x satisfy the equation x = 9(x, y, z, 

…); then if  
x
φ∂

∂
 < 1  in a neighborhood of x which contains the successive 

approximations of x, then the approximations converge to the true value of x. 

 

III.  Artificial and Empirical Data Trials 

The calculation scheme was applied to a variety of artificial and real data samples. 

First, three MMPI keys developed to discriminate between the sexes were analyzed by the 

method. The results are given in Table 1. The method gave very accurate parameter 

estimates on the second and third keys after just 100 iterations, at which point the 

estimates demonstrated strong convergence. However, for the first key, the base-rate 

estimate is markedly in error, especially after the process had been continued until 

convergence was apparent. It is difficult to explain this singular error, as other methods 

have estimated the base-rate equally well for the three keys. The exact significance of the 

larger number of iterations required for apparent convergence is not known, but the result 

is illustrative of a general finding that if several hundred iterations are required for 

convergence then the results should not be trusted and will fail further consistency tests. 

The chi-square goodness-of-fit values (by comparing the estimated and the observed  
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Table 1.  Examples of empirical data trials of the maximum-likelihood single-

indicator method using MMPI keys to identify the sexes. 

 P1 µ1 σ1 P2 µ2 σ2 χ2 * 

First Key (N = 1105) 
Initial guess .500 6.00 3.00 .500 13.00 3.00  
No. of interations        

50 .417 9.45 2.50 .582 14.40 2.16 14.89 
100 .449 9.66 2.58 .551 14.51 2.12 14.58 
200 .483 9.88 2.67 .516 14.64 2.07 14.37 
300 .499 9.98 2.71 .501 14.69 2.05 14.33 

True sample value .389 9.57 2.55 .611 14.10 2.56  

Error .110 .41 .16 –.110 .59 –.51  

Second Key (N = 1105) 
Initial guess .432 7.36 2.37 .568 11.97 2.26  
No. of iterations        

10 .428 7.33 2.36 .572 11.95 2.27 13.34 
50 .411 7.24 2.32 .589 11.89 2.29 13.28 

100 .368 6.98 2.23 .632 11.72 2.35 13.18 

True sample value .389 7.31 2.42 .611 11.68 2.47  

Error –.021 –.33 –.19 .021 .04 –.12  

Third Key (N = 1105) 
Initial guess .500 6.00 3.00 .500 13.00 3.00  
No. of interations        

10 .418 8.64 2.54 .582 13.02 2.42 15.25 
50 .418 8.59 2.48 .582 13.06 2.38 14.92 

100 .416 8.58 2.48 .584 13.06 2.38 14.92 
200 .409 8.54 2.46 .591 13.03 2.40 14.91 

True sample value .389 8.60 2.57 .611 12.84 2.53  

Error .020 –.06 –.11 –.020 .19 –.13  

* χ2
.05 = 26.30        
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compound sample frequency distributions) are similar in magnitude and do not approach 

significance for the three keys. It is seen then that non-significant χ2 values do not 

guarantee accurate parameter estimates. The initial guesses were obtained by a method 

which makes use of probability paper and which will be discussed below (Harding, 1949). 

Artificial data were generated by means of a normal random number generator (see 

p. 3ff of Golden and Meehl, 1973b for the method). Intervals were formed simply by 

rounding each generated number to its greatest integer part; parameter values and sample 

sizes were such that this method produced an acceptable interval coarseness. A perusal of 

Table 2 shows that the method produced accurate parameter estimates with 100 iterations 

when the mean separations are as small as one within taxonomic class sigma-unit and 

base-rates as disproportionate as .1 and .9. While none of the chi-square values approach 

significance, the goodness-of-fit of the theory is evidence[d] mainly by the acceptable 

accuracy of the parameter estimates. 

The results of the method when the initial estimates are poor is illustrated by an 

example given in Table 3. It can be seen that initial guesses can be off quite a bit without 

apparently affecting the accuracy after a large enough number of iterations. However, 

several hundred iterations were required for convergence to be apparent even though 

accuracy was sufficient after 100 iterations. Several extrapolation methods have been tried 

to increase the speed of convergence but without much success. At present 100 to 200 

iterations appear to be sufficient for adequate estimation accuracy when initial guesses are 

not grossly in error, even though a much larger number is required for convergence to be 

easily discernible. 
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It is clear that intervals must be such that the frequencies for each are large enough 

to avoid excessive sampling error. One procedure is to combine pairs of contiguous 

intervals until (a) the interval frequencies are apparently large enough to avoid excessive 

sampling error and (b) the compound frequency curve is always monotonically increasing 

or decreasing on each side of the local maxima and minima, the number of each being less 

than or equal to the postulated number of taxonomic classes. However, it has been found 

that for compound samples of a few hundred in size, taxonomic class mean separations of 

two within-taxonomic class sigma units and equal base-rates, which are about optimal 

conditions in psychopathology measurement, the base-rate estimate can be in error by as 

much as .10, for example. The required interval frequency size and a safe method of 

interval construction should be determined more carefully by Monte Carlo study. 

The maximum likelihood method has several advantages over the minimum chi-

square method, mainly generalizability and much fewer, although still numerous, 

calculations. Both methods apparently can produce multiple solutions but the existence of 

several solutions is more easily discovered with the minimum chi-square method. Whether 

this is an advantage or not depends on whether or not the different solutions correspond to 

real but different taxonomies. Suffice it to say that in the present work there is no evidence 

to indicate that possible existence of several taxonomies underlying a properly selected set 

of indictors is a matter of real concern although, of course, this may not always be the 

case. In this connection, it should be noted that when the solution is unique then it has  
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Table 2.  Examples of artificial data trials of the maximum-likelihood single-
indicator method. 

 P1 µ1 σ1 P2 µ2 σ2 χ2 * 
Example 1 
Initial guess .500 7.43 2.64 .500 13.50 1.91  
Iteration estimate** .402 7.76 2.02 .598 14.02 2.39 16.90 
True value .429 8.05 2.06 .571 14.22 2.18  
Error –.027 –.29 –.04 .027 –.20 .21  

Example 2 (N = 1000) 
Initial guess .500 7.42 2.56 .500 15.00 2.31  
Iteration estimate** .344 8.70 1.92 .656 12.73 2.16 9.64 
True value .402 8.85 2.06 .598 13.09 2.08  
Error –.058 –.15 –.14 .058 –.36 .08  

Example 3 (N = 1000) 
Initial guess .350 8.00 2.23 .650 13.00 2.26  
Iteration estimate** .327 8.56 2.29 .673 14.11 2.29 18.68 
True value .310 8.05 2.06 .690 14.22 2.18  
Error .017 .51 .23 –.017 –.11 .11  

Example 4 (N = 1000) 
Initial guess .200 7.00 1.73 .800 14.00 2.00  
Iteration estimate** .256 7.76 2.06 .744 11.78 1.85 18.80 
True value .300 8.00 2.00 .700 12.00 1.73  
Error –.044 –.33 .06 .044 –.22 .12  

Example 5 (N = 1000) 
Initial guess .500 8.01 2.66 .500 13.42 1.73  
Iteration estimate** .219 8.23 2.38 .781 14.34 2.13 15.74 
True value .208 8.05 2.06 .792 14.22 2.18  
Error .011 .18 .32 –.011 .12 .05  

Example 6 (N = 1000) 
Initial guess .106 10.11 1.89 .894 11.15 2.16  
Iteration estimate** .110 10.44 2.01 .889 11.11 2.16 9.20 
True value .100 9.48 1.86 .900 11.13 2.02  
Error .010 .96 .15 –.011 –.02 .14  

Example 7 (N = 1000) 
Initial guess .500 7.42 2.65 .500 13.50 1.91  
Iteration estimate** .128 8.54 2.12 .872 14.31 2.17 12.22 
True value .117 8.05 2.06 .883 14.22 2.18  
Error .011 .49 .06 –.011 .09 .01  

* χ2
.05 = 26.30 ** All estimates are after 100 iterations 
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Table 3.  Example of artificial data trial of the maximum-likelihood single-indicator 
method when guesses were poor (N=1000). 

 P1 µ1 σ1 P2 µ2 σ2 χ2 * 

Initial guess .450 4.575 1.17 .550 9.350 1.32  

Number of iterations 

50 .104 9.618 1.72 .896 11.205 2.14 8.93 

100 .106 10.113 1.89 .894 11.150 2.16 9.08 

150 .110 10.444 2.06 .890 11.114 2.16 9.21 

200 .115 10.871 2.12 .885 11.063 2.16 9.29 

250 .115 10.964 2.15 .885 11.051 2.16 9.29 

300 .116 11.007 2.16 .884 11.045 2.16 9.29 

350 .116 11.027 2.16 .884 11.045 2.16 9.29 

400 .116 11.027 2.16 .884 11.045 2.16 9.29 

450 .116 11.038 2.16 .884 11.041 2.16 9.29 

500 .116 11.039 2.16 .884 11.041 2.16 9.29 

550 .116 11.041 2.16 .884 11.041 2.16 9.29 

600 .116 11.041 2.16 .884 11.041 2.16 9.29 

650 .116 11.041 2.16 .884 11.041 2.16 9.29 

True sample value .100 9.020 1.90 .900 11.253 2.04  

Error .016 2.021 .26 –.016 –.212 .12  

* χ2
.05 = 26.30        
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been analytically shown that both maximum likelihood and minimum chi-square methods 

produce the same result for large enough samples (Cramé, 1946). 

 

IV.  Use of Probability Paper for Initial Guesses 

The initial guesses of the parameters can be obtained by a procedure described by 

Harding (1949). The method makes use of probability paper and the assumption that the 

taxonomic class frequency distributions are normal. Generally, when the compound 

frequency distribution is polymodal and the sample size very large, the method is 

sufficiently accurate by itself. Since the procedure is based on the same assumption of 

normality within taxonomic classes it lends itself well to the problem of making initial 

guesses for the maximum likelihood method. 

Two dozen cumulative density functions resulting from composites of various 

numbers of artificial normal frequency distributions, for which the compound sample sizes 

were 1000, were analyzed without knowledge of the true component parameters by using 

the probability paper method. The following general conclusions were formed: 

a) when the separation between component means is about two intra-component 

sigma units then the parameters can be estimated with at least 90% accuracy, 

b) two components are distinguishable from one component when the separation 

in the means is above one intra-component sigma unit, 

c) when the estimates are such that the estimated mean separation is less than two 

intra-component sigma units the results are not to be trusted, and 
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d) apparently, the estimates are always accurate enough to serve as initial guesses 

for the maximum likelihood method. 

These conclusions are known to be true only when the within component population 

distributions are perfectly normal. In practice, distributions are not perfectly normal, of 

course; therefore, it remains to be determined if the probability paper method is sufficient 

for the unknown robustness of the maximum likelihood method with respect to the 

normality assumption. Pending such a study it would appear safe to use the method with 

the following stipulations: 

a) the method is not more accurate than is indicated above for ideal conditions 

and 

b) the method might be mainly useful in suggesting alternative latent situations 

which can be subjected to testing by the normal theory. 

 

V.  Multi-indicator Generalizations 

When several indicators are analyzed singly they can produce discrepant estimates 

of the base-rates (some or all being erroneous) such as the three male-female keys did. 

Possibly the only way to rectify such a situation when singly analyzing indicators is to 

increase the sample size. Since more than one indicator is usually available, it follows that 

one is behooved to consider a simultaneous multi-indicator approach as presumably this 

lessens the sample size requirement. The maximum likelihood iterative scheme can easily 

be adapted to the multi-indicator situation by simultaneously estimating the parameters of  

 – 12 –  



each indicator just as is done if analyzed singly except changing the estimate of the 

common base-rate parameter to be the average of the estimates produced by the previous 

iteration. 

Analytical proof that such a method should correctly converge is not provided but an 

empirical trial of the method is encouraging in this respect. The three male-female keys 

used previously were analyzed and the results are given in Table 4. The results of single 

indicator analyses were used as initial guesses and convergence was apparent after 50 

iterations. The results are remarkable in that all the parameter estimates are extremely 

accurate. Further encouragement is gained from the fact that the intra-taxa correlations 

between the indicators were each between .3 and .5; thus the method might not require a 

strong within taxonomic class independence condition to be met. 

Also, the method was tried with an artificial data sample in which the three 

indicators were distributed multivariate normally within taxonomic class, all within-

taxonomic class correlations being equal to .5. The resulting parameter estimates, given in 

Table 5, were also quite accurate. 

It is intuitively clear that a multi-indicator method should be the more accurate of the 

two approaches, especially if all indicators are of about equal validity and are weakly 

correlated within taxonomic class. Also, it is true that some (most?) taxonomies require 

the use of more than one indicator for a complete specification. For such a taxonomy, 

using fewer than a complete set of indicators would lead to an incorrect result. One the 

other hand, it also is true that sometimes only a single candidate indicator is available.  
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Table 4.  An empirical trial of the first multi-indicator generalization of the 
maximum-likelihood solutions using the three MMPI keys to identify the 
sexes (N = 1105). 

 P1 µ1 σ1 P2 µ2 σ2 χ2 * 

First Key 

Initial guess .499 9.98 2.71 .501 14.68 2.05  

Estimate after 
50 iterations .431 9.55 2.54 .569 14.45 2.15 14.70 

True sample value .389 9.57 2.55 .611 14.10 2.56  

Error .042 –.02 –.01 –.042 .35 –.41  

Second Key 

Initial guess .368 6.98 2.23 .632 11.72 2.35  

Estimate after 
50 iterations .431 7.34 2.36 .569 11.96 2.26 13.40 

True sample value .389 7.31 2.42 .611 11.68 2.47  

Error .042 .03 –.07 –.042 .28 –.21  

Third Key 

Initial guess .410 8.54 2.46 .590 13.03 2.39  

Estimate after 
50 iterations .431 8.66 2.51 .569 13.11 2.37 14.90 

True sample value .389 8.60 2.57 .611 12.84 2.53  

Error .042 .06 .06 –.042 .27 –.16  

* χ2
.05 = 26.30        
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Table 5.  An artificial trial of the first multi-indicator generalization of the  
maximum likelihood solution using the three MMPI keys to identify  
the sexes (N = 1000). 

 P1 µ1 σ1 P2 µ2 σ2 χ2 * 

First Key 

Initial guess .31 9.90 2.15 .69 15.00 2.07  

Estimate after 
200 iterations .28 9.68 1.83 .72 14.89 2.03 6.30 

True sample value .30 10.04 2.12 .70 14.93 2.05  

Error –.02 –.36 –.29 .02 –.04 –.02  

Second Key 

Initial guess .31 12.12 3.27 .69 17.97 3.08  

Estimate after 
200 iterations .28 15.09 3.98 .72 17.30 3.39 17.90 

True sample value .30 13.77 3.27 .70 17.94 3.08  

Error –.02 1.32 .71 .02 –.64 .31  

Third Key 

Initial guess .31 11.55 1.52 .69 20.53 1.54  

Estimate after 
200 iterations .28 12.54 1.60 .72 16.86 1.61 6.20 

True sample value .30 12.60 1.53 .70 16.94 1.52  

Error –.02 –.06 .07 .02 –.08 .09  

* χ2
.01 = 20.80; χ2

.05 = 11.60 
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Also, it is possible that some taxonomies are optimally detected when a certain single 

indicator is used alone, that indicator being the only one with the required taxon-specific 

variance. In this situation, the use of further indicators, even though each being adequately 

discriminative, may merely cause what Loevinger (1957) called “psychometric drift.” One 

way this could happen is by violation of within taxa independence assumptions which are 

used in the solution below. In summary then, the comparison of the single and the multiple 

indicator methods will not just be a mathematical matter but also an empirical one. 

The multi-indicator generalization of the maximum-likelihood development by 

Hasselblad can easily proceed under the assumption of intra-taxonomic class indicator 

independence. Let xik be the score of the ith individual on the kth indicator and x~i be the 

vector of the ith individual scores on the p indicators (xi1, xi2, … , xip). Also, let 9( x~i) 

denote the compound density and 9j(x~i) denote the jth taxonomic class density where j = 1, 

2, 3, … , m at the point x~i. Thus 

9( x~i) = Σ
m

j =1
  pj 9j (x–i) 

where pj is the base-rate of the jth taxonomic class. The likelihood function is given by 

L = Π
N

j=1
   9( x~i) , 

 

and the maximum likelihood estimates of the latent parameters pj, µjk and σjk, where k 

denotes the kth indicator, are obtained by solving the following set of 2mp + m – 1 

simultaneous equations: 
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 log L 0
jp

∂ =
∂

 j = 1, 2, 3, … , m – 1 

 log L 0
jkµ

∂ =
∂

  j = 1, 2, 3, … , m (1) 

 log L 0
jkσ

∂ =
∂

  k = 1, 2, 3, … , p  

The following two assumptions make it possible to easily obtain solutions of (1): 

(a)  all indicators are independent within each taxonomic class; i.e., 

9j (x~i) = Π
p

k=1
   9jk (xik)   and 

(b)  the interval density is equal to the normal curve ordinate at the interval 
midpoint; i.e., 

9jk (xik) = 1
2 jkπ σ

  exp 
( )2

2

1
2

ik jk

jk

x µ
σ

 − − 
  

 . 

We now have 

log L =  Σ
N

i=1
    log{9 (x~i)} 

=  Σ
N

i=1
    log { Σ

m

j=1
    pj 9j (x~i)} , 

and it follows that 

 
( ) ( )

( )=1

1

log L 0
N

j i m i
m

ij
j j i

j

x x
p p x

φ φ

φ
=

 
 −∂ = ∂  
  

∑
∑

 = ,  j = 1, 2, 3, … , m – 1 (2) 

 

 
( )

( )

2

=1

1

log L 0

ik jk
j j iN

jk
m

ijk
j j i

j

x
p x

p x

µ
φ

σ
µ φ

=

  −
  

∂    = = ∂  
 
 

∑
∑

, and  (3) 
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( ) ( )

( )

2

2N

=1

1

log L 0

ik jk jk
j j i

jk

m
ijk

j j i
j

x
p x

p x

µ µ
φ

σ

σ φ
=

  − −  
  ∫∂  = ∂  
 
  

∑
∑

 = . (4) 

Letting Qi = Σ
m

j=1
  pj 9j (x~i)  and  qij = 9j (x~i)  then (3) and (4) can be written as 

 1

1

N

j ij ik i
i

jk N

j ij i
i

p q x Q

p q Q
µ =

=

=
∑

∑
  and (5) 

 
( )2

1

1

N

j ij ik jk i
i

jk N

j ij i
i

p q x Q

p q Q

µ
σ =

=

−
=
∑

∑
 . (6) 

Writing (2) as 

 
=1 =1

N N
ij im

i ii i

q q
Q Q

   
=   

   
∑ ∑  

and multiplying by pj, we have 

 
=1 =1

N N
ij im

j j
i ii i

q qp p
Q Q

   
=   

   
∑ ∑  (2a) 

Summing (2a) over j, we get 

 
1 =1 =1

m N N
j ij im

j i ii i

p q q
Q Q=

  
=  

  
∑∑ ∑





 (2b) 

and since the left side of (2b) is N, it follows from (2a) that 

 
=1

N
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j j
i i

q
p p N

Q
 

= 
 

∑  
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or 

 =1

N
j ij

i i
j

p q
Q

p
N

 
 
 =

∑
 . (7) 

Thus equations (5), (6) and (7) can then be solved in an iterative fashion just as was done 

in the single indicator method. It has been found that the estimate of (5) must be 

substituted into (6) within the iteration and likewise that of (6) (and of (5) ) into (7) for the 

iterative process to converge correctly. 

This completes the derivation of the multi-indicator generalization of the maximum 

likelihood solution. Unfortunately a computer program for the method has not been 

completed and there are no trial results to report at this time. 

 

VI.  The Independence Assumption 

The most important comparison of two multi-indicator generalizations would appear 

to be that of the relative robustness with respect to indicator independence within 

taxonomic classes. Even though the first method is not derived from explicitly stated 

assumptions as the second method is, and it is not known if the required assumptions for 

the first method do, in fact, include an independence assumption, a few Monte Carlo 

results indicate that the parameter estimates lose accuracy as within taxonic class 

dependency is greatly increased. Indicator independence within taxonomic class is an 

idealization that is not always easily approximated in practice. In the area of 

psychopathology measurement, not only do the most powerful taxometric indicators 

frequently correlate within taxonomic class because of shared valid variance but also 

because of shared error variance due to common sources of error of measurement. 
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While the (unknown) formal independence requirements of the first generalization 

could be either stronger or weaker than those of the second, most importantly, it is not 

known which method is more robust with respect to either (a) indicator independence 

within taxonomic class or (b) within taxonomic class normality. That is, it is not so much 

the strength of the assumptions but more the robustness with respect to the assumptions 

that is the matter of ultimate concern. Apparently, only a Monte Carlo investigation will 

allow for such comparison of the methods. 

 

VII.  The Normality Assumption 

The assumption of intra-taxonomic class normality has several consequences which 

are important in such matters as construction of indicators from items and the 

identification of a taxonomy. Since the present taxonomic work uses unweighted sums of 

MMPI items, the present analysis is in terms of indicators which are sums of Bernoulli 

variables. The reasonableness or unreasonableness of the normality assumption can be 

more easily determined with aid from the result that the sum of (many) independent 

Bernoulli random variables is distributed asymptotically normal, the approximation being 

better the larger the number of such variables (see p. 24 of Golden and Meehl, 1973a). It 

should be pointed out that it is not necessary that the Bernoulli variable parameters all be 

the same; the demonstration referred to above shows that the variables can have any set of 

parameter values. Monte Carlo study should show that in practice, for short enough keys, 

the approximation is dependent on the dispersion of the item means, being better when the  

dispersion is small. It should likewise be shown that for reasonably long keys, say about 

25 items or more, the distributions are approximately normal if the correlations between 
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each pair of items are close to zero. While pairwise item independence is a sufficient 

condition it has not been shown that it is a necessary one. It would appear that for a long 

enough key it is only necessary that the average of the absolute values of the correlations 

be near zero. These matters are terribly complex to handle analytically but a Monte Carlo 

study will be simple and straightforward and will provide a sufficiently precise and 

general result. 

Since the method requires that indicators be constructed from items that are 

approximately independent within taxonomic class, the indicators have nearly zero 

homogeneity within taxonomic class. Thus, whatever degree of the homogeneity of the 

key does exist for the compound group is caused mainly, if not solely, by the compound 

group being a mixture of the taxonomic classes. Conversely, when a compound frequency 

distribution is determined to be the resultant of two or more overlapping normal frequency 

distributions then it is implied that the items of the key should be on the average 

independent within the corresponding taxonomic classes. This last result leads naturally to 

consistency tests which are discussed below. Most importantly here though, it follows that 

keys that are considered to be even moderately homogeneous measures of a single 

dimension within the taxonomic class are most likely not suited for use with the present 

method; the reason being, of course, that homogeneity implies non-normality of the intra-

taxonomic class distributions. 

For the first multi-indicator method, in which, in view of some Monte Carlo trials, 

strict independence between indicators is not required, it is interesting to note that while 

items within the key must be on the average independent within taxonomic class, items 

from the different keys presumably can be rather highly dependent within taxonomic 
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class. Thus, in constructing keys from a large set of discriminative items what is necessary 

is to somehow sort the items into groups such that the average absolute correlation within 

each group is near zero within taxonomic class; the keys are then formed from these 

groups paying no attention to cross-key correlation. Apparently two items from two 

different groups can be correlated moderately high on the average; possibly, the keys 

could even have the properties of parallel tests. Curiously, the item independence 

requirement for the maximum covariance method is diametrically opposite of this. The 

major assumption of the maximum covariance method is roughly that the indicators be 

independent within taxonomic class. The covariance of two keys is zero if all the items of 

one key are independent of all those of the other key. This result follows from the fact that 

the covariance of sums of items is a linear function of all the item cross-key covariances 

(McNemar, 1963, p.206). Although pairs of items from different keys must be weakly 

correlated on the average, items within a key can be highly correlated; that is, keys can be 

homogeneous within taxonomic class. 

Thus, for example, if scales 7 and 8 of the MMPI are two of a set of candidate 

indicators of a purported taxonomy, then the normal theory is most likely more 

appropriate than the maximum covariance theory since the keys are regarded to be very 

heterogeneous and yet are highly correlated for most populations. On the other hand, if  

keys are known to have high internal consistency for compound samples, being developed 

by such methods as factor analysis, then the maximum covariance method is more 

appropriate. While such a priori considerations are sometimes useful they are not 

sufficient for determining if one theory or another is adequate in a particular instance. It is 

the ultimate responsibility of the consistency tests, which are discussed below, to 
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determine this. Suffice it to say here that if the assumptions of a theory are such that the 

real situation deviates more from the ideal condition than can be tolerated for accurate 

enough estimation of the parameters (the method is not robust enough), then a good 

consistency test will detect this disparity and indicate that the theory should be rejected. 

The normality assumption implies that the compound distribution must have certain 

properties. The resultant of two sufficiently distinct but overlapping normal distributions 

differs from the normal one in being either skewed or platykurtic or bimodal. Thus the 

compound frequency distribution should be initially checked for the presence of one or 

more of these characteristics as the disjunction serves as a necessary requirement for the 

normal theory. Sampling irregularities make this step sometimes appear difficult; suffice it 

to say that when this happens it probably indicates that the sample size is too small for the 

normal method although accurate Monte Carlo guidance is yet to be obtained. 

In view of the result mentioned above, the compound frequency distribution is non-

normal because the compound item correlations or covariances are not zero. Analysis of 

the compound covariances leads to another taxonomic theory closely related to the normal  

theory. Letting the subscripts ‘left’ and ‘right’ denote the left and right taxonomic classes 

respectively, then the compound covariance between two items x, y is given by 

σxy = Pσxy right  + Qσxy left + PQ∆px∆py 

where 

σxy left is the covariance within the left taxonomic class, 

σxy right is the covariance within the right taxonomic class, 

P is the base-rate of the right taxonomic class and 
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∆px and ∆py are the differences in the item plus-rates for the two taxonomic classes for 

items x and y (see p. 51 of Meehl, 1965). 

Assume as before, σxy left = σxy right = 0. Thus for n items and two taxa, there are 2n + 1  

unknowns (the taxonomic class item plus-rates and the base-rate) and there are   = 10
2



 

( 1
2

n n − )

)

 covariance mixture equations such as above. Thus if the system of  

equations 

( )(
( )

right left right left

right left

ij i i j j

i i i

PQ p p p p

p p p p

σ = − − 


= − 
  for  i, j = 1, 2, 3, … , n; (i ≠ j) (8) 

has an unique solution (it is overdetermined when n ≥ 3) then it can be concluded that the 

items satisfy the latent conditions required by the normal theory (it is interesting that this 

is so even though the method does not make any reference to normal distributions) and 

analysis of the key compound frequency distribution by the maximum likelihood method 

should yield consistent results. Unfortunately, methods for solving (8), such as one by 

Brown (1967), have been found to be highly sensitive to sampling error and severely lack  

robustness with respect to assumption of zero within taxonomic class covariance. 

 

VIII.  Development of Indicators 

When indicators are sums of items then consideration must be given to selecting 

items that are independent within taxonomic classes; however, there are no established 

methods for doing this. One possibility is provided by consistency hurdles theory, an 

independent taxonomic detection theory discussed in another report in this series (Golden, 

et al., 1974). Suffice it to say here that the method selects items which should be 
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sufficiently independent within taxonomic class as the method is based on the same 

requirement. If used in this manner the two methods would serve as checks on each other. 

A method that has been found not to work well is to construct keys by factor analysis 

of the compound sample, forming a key from items that load highly on the same factor. A 

few such studies with the MMPI items indicate that factors tend to result from items that 

are not only discriminative of the taxonomic classes but are also correlated within the 

taxonomic classes. This result would evidently be obtained if the factor structures within 

the taxonomic classes were similar to that for the compound group. 

One item selection theory that follows from the same assumption of independence 

proceeds as follows. Suppose there exists a large pool of items, some taxometrically 

discriminative, some not, and we do not know which is which, and we wish to choose a 

subset of items, each discriminative and each pair satisfying the independence 

requirement. Let i, j, k denote three items. Then if the three items are mutually 

independent within taxonomic classes it is easily shown that for the compound group 

Fi =def 
( )( )

( ) ( )2i j i kij ik
i

jk j k

PQ p p PQ p p
PQ p

PQ p p
σ σ
σ

∆ ∆ ∆ ∆
= =

∆ ∆
∆  

where ∆pi is the difference in taxonomic class item means; or a constant for all j and k. For 

each i, all (j,k) pairs that give approximately the same estimate of Fi are determined. Again 

for each i, the largest subset, call it Si, of those (j,k) pairs is determined such that every 

pair of items in Si gives approximately the same value for Fi. Such a subset will be formed 

for every item i, and if it is large enough it can be further considered as a set of items for a 

key. If there are sets of mutually quasi-independent-within-taxonomic class items in the 

original pool then they should turn up as Si subsets. It is clear however, that an Si subset 
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does not necessarily consist of items which are quasi-independent within taxonomic 

classes. 

The sample value of Fi, denoted by F̂i, will contain error due to sampling error in the 

three covariances; hence, it will not be exactly equal to PQ∆pi
2
. A second reason that Fi 

will not exactly equal PQ∆pi
2
 is that the three items will not be perfectly pairwise 

independent within taxonomic classes. Thus these two sources of error when taken into 

account give a range for acceptable values of Fi. In order to obtain an estimate of this 

range, consider each triplet of σ̂ ’s as likewise containing these two kinds of error; namely, 

sampling error, αij and dependence error, βij. Since 

F̂i | jk = 
ˆ ˆ
ˆ
ij ik

jk

σ σ
σ

 

and letting ∆ denote a small deviation of F̂ from PQ∆pi
2
 we have 

( ) ( ) ( )| 2

ˆ ˆ ˆˆˆ∆F
ˆ ˆ ˆ

ij ij ikik
i jk ij ij ik ik jk jk

jk jk jk

σ σ σσ α β α β α β
σ σ σ

+ + + − +  

If we restrict the within taxonomic class sample covariance to be less than δ, then each β is 

equal to Pδ + Qδ = δ. In order to assess the α‘s we must know the sampling variance for 

the covariance of two Bernoulli variables. 

The derivation for sampling covariance proceeds as follows. Let i and j be two 

subscripts which refer to two Bernoulli random variables. The sample covariance between 

the two variables is given by 

( )( )
1

ik i jk j
k

ij

x x x x
s

n

− −
=

−

∑
 

 1

1 1

n

ik jk
k

i j

x x
n x x

n n
== −

− −

∑
 

the variance of sij is given by 

E{sij – E(sij)}2 = E(sij
2) – {E(sij)}2 .  
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The first term can be developed as follows: 
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If we let E(xi) = pi, E(xj) = pj and E(xixj) = pij, we have 
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The second term is written in terms of the same parameters as follows: 
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( ){ } ( )2 2 2 2E 2ij ij i j ij i j ij i js p p p p p p p p= − = − + 2p  . 

After further simplification we have 
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Letting σij = pij – pi pj or pij = σij + pi pj, we have for the sampling variance of the 

covariance σij between two Bernoulli variables, with parameters pi and pj, for samples of 

size n, the expression 
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The Monte Carlo method was used to check the formula at a few values of the parameters 

and the results agreed very well with those of the formula. In Table 6 the standard 

deviation of sij is given in terms of various values of n, pi, pj and σij . 

Returning to the expression for ∆F̂ i we are now able to estimate upper and lower 

bounds. To obtain an upper bound we assume that βij = βik = δ > 0, and since the 

probability that αij and αik deviate positively and αjk deviates negatively by a sigma unit or 

more is less than .05 and sigmas of the α‘s are less than .01 for n ≥ 500, we have 

( )| |2

ˆ ˆ ˆ ˆ ˆ ˆ
F .

ˆ
ik ik ij jk ij ik

i ik i jk
jk

σ σ σ σ σ σ
δ

σ
+ +
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nearly all the time. 

In similar fashion, a lower bound can be shown to be the negative of the upper 

bound. Thus for each i, pairs of items are selected so that the pairs of Fi|jk ± Bi|jk intervals 

intersect. 

The method was tried in an example using 10 items, 5 of which discriminated 

strongly between the sexes (∆pi > .30) and 5 which did not (–.10 < ∆pi < .10). Two of the 

discriminative items were strongly correlated within the sexes while all other eight pairs of 

discriminative items were not. The method successfully picked the four most 

discriminative and weakly correlated items. After a computer program is completed the 

method will be studied by more extensive empirical and artificial data trials and in 

conjunction with the maximum likelihood taxometric method. Although the method will 

not necessarily produce independent item sets (that is, if there are no such sets, the method 

may produce a spurious set), it should detect such sets of items (for large enough samples) 

if, in fact, they do exist. 
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Table 6.  Values of the sampling standard deviation of the covariance of two 

Bernoulli variables as a function of sample size (N), covariance (σij), and the 
two variable parameters, pi and pj. 

 pi 
N σij pj .2 .4 .6 .8 

100 .00 .2 
.4 
.6 
.8 

.0161 

.0197 

.0197 

.0161 

 
.0241 
.0241 
.0197 

 
 
.0241 
.0197 

 
 
 
.0161 

 .05 .2 
.4 
.6 
.8 

.0204 

.0206 

.0174 
—* 

 
.0240 
.0232 
.0174 

 
 
.0240 
.0206 

 
 
 
.0204 

 .10 .2 
.4 
.6 
.8 

.0228 

.0202 
— 
— 

 
.0229 
.0211 

— 

 
 
.0229 
.0202 

 
 
 
.0228 

 .15 .2 
.4 
.6 
.8 

.0240 
— 
— 
— 

 
.0205 
.0170 

— 

 
 
.0205 

— 

 
 
 
.0240 

500 .00 .2 
.4 
.6 
.8 

.0072 

.0088 

.0088 

.0072 

 
.0107 
.0107 
.0088 

 
 
.0107 
.0088 

 
 
 
.0072 

 .05 .2 
.4 
.6 
.8 

.0091 

.0092 

.0078 
— 

 
.0107 
.0103 
.0078 

 
 
.0107 
.0092 

 
 
 
.0091 

 .10 .2 
.4 
.6 
.8 

.0102 

.0090 
— 
— 

 
.0102 
.0094 

— 

 
 
.0102 
.0090 

 
 
 
.0102 

 .15 .2 
.4 
.6 
.8 

.0107 
— 
— 
— 

 
.0091 

— 
— 

 
 
.0091 

— 

 
 
 
.0107 

1000 .00 .2 
.4 
.6 
.8 

.0051 

.0062 

.0062 

.0051 

 
.0076 
.0076 
.0062 

 
 
.0076 
.0062 

 
 
 
.0051 

 .05 .2 
.4 
.6 
.8 

.0064 

.0065 

.0055 
— 

 
.0076 
.0073 
.0055 

 
 
.0076 
.0065 

 
 
 
.0064 

 .10 .2 
.4 
.6 
.8 

.0072 

.0064 
— 
— 

 
.0072 
.0066 

— 

 
 
.0072 
.0064 

 
 
 
.0072 

 .15 .2 
.4 
.6 
.8 

.0076 
— 
— 
— 

 
.0064 
.0054 

— 

 
 
.0064 

— 

 
 
 
.0076 

*Note: The formula is evaluated only when the following conditions are met:  
(i) pij ≥ 0, (ii) pij – pi ≤ pi(1 – pi) pj(1 – pj), (iii) pi ≥ pij, pj ≥ p, (iv) 1 – pi ≥ pj – pij  
and (v) 1 – pj ≥ pi – pij. 
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As the above method is cumbersome, although encouraging, it is of interest to 

describe a simple method that failed, as it leads to another important fact. In selecting 

items for keys it is necessary that an item meet two conditions. First, items must 

discriminate sufficiently between the taxonomic classes and second, an item must not be 

correlated with the other selected items within the taxonomic class. Thus, the total 

manifest covariance between items x and y for the compound sample must be such that 

while the first two terms of the covariance mixture equation are relatively small, the third 

is relatively large. 

σxy = Pσxys + Qσxyn + PQ∆x– ∆y– . 
 
If we sum the covariances of an item with each of the other items then we would expect 

this sum to be large to the extent the item is discriminative if we assume that the within 

taxonic class covariances to be about the same size no matter the degree of discrimination. 

Unfortunately, a trial of this procedure with the items of the male-female example was not 

very encouraging. Some insight into why this happened is gained by plugging typical 

numerical values into the covariance mixture equation. The within sex covariances are 

observed to be between .05 and .10 typically. While the contribution to the total 

covariance from the within sex covariance is .05 to .10, the contribution from the third 

term is typically not more than (.5)(.5)(.3)(.3) = .025, which is not only considerably less 

but only twice the sampling standard deviation of the covariance terms for large sample 

sizes. It is not difficult to imagine that the rank order of the item covariance sums is 

mainly influenced by the sampling fluctuation of the within taxonomic class terms. 

The important fact, illustrated by this example, is that even for a pair of very 

discriminative items, a major portion of the total covariation comes from within the 
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taxonomic classes and a minor portion from the separation of taxonomic classes. That is, 

all pairs of items in the male-female keys are of this nature, and there is no reason to 

believe MMPI items for other taxonomies should behave differently in this regard. 

 

IX.  Classification of Individuals 

The primary purpose of the present taxometric theories is for taxonomy detection and 

description and not necessarily classification of individuals. Normally, however, it will be 

of interest to compare the taxonomic classes on a number of other variables, not used as 

defining indicators, for purposes such as taxonomic class identification, substantive theory 

testing and the like and, in order to do this, classification of individuals may be necessary. 

Since the normality assumption has already been used and so justified by passage of the 

consistency tests, yet to be discussed, it is natural to use the estimated multinormal 

indicator density functions for each taxonomic class for the classification procedure also. 

It is noted that at this point it is necessary to make the additional assumption that the intra-

taxonomic class indicator correlations are near zero. Using the estimated base-rates, 

Bayes’ Rule can be used to obtain the posterior probabilities that an individual, with a 

given set of scores, belongs to each of the taxonomic classes. Presumably, he would be 

assigned to the most likely taxonomic class as this scheme can be shown to minimize the 

number of misclassifications when the prior probabilities are equal. 

Classification of individuals also gives rise to an iterative bootstrapsing 

generalization of the method. Letting the two taxonomic classes be denoted by subscripts l 

[for left] and r [for right], the proportion of those correctly classified in taxon r, Pr, and 

those for taxon l, Pl, can be determined by a method given by Golden and Meehl (p. 31, 
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1973a). Writing the covariance mixture equation for each of the two classification groups 

we have 

 
cl l rl l l lxy xy xyP Q PQ xσ σ σ= + + ∆ y∆ , and 

(9)
 

 cr l rr r r rxy xy xyP Q PQ xσ σ σ= + + ∆ y∆  

 (cl: classified as left; cr: classified as right) 

where 

lxyσ  and  are the manifest covariances for individuals classified in groups l and r and 
rxyσ

∆x– and ∆y– are the estimated differences in the taxonomic class means. 

Thus (9) can be solved simultaneously for the two unknowns  and . Now, with 

estimates of the intra-taxonomic class covariances, previously assumed to be zero, we are 

presumably in a position to improve the estimates of the multi-indicator density functions 

and, hence, improve the classification accuracy. The procedure can be applied repeatedly 

in an iterative fashion, possibly producing estimates that converge to approximately the 

true values. Again, Monte Carlo study is indicated. 

lxyσ
rxyσ

It should be noted that the method does produce underestimates of the intra-

taxonomic class covariances. This is because the taxonomic classes are not the latent 

groups considered in (9); the latent groups which we referred to are the taxonomic class 

members which are classified correctly. 

Another method of estimation of the covariances results from the fact that the 

conditional covariance between two output indicators x and y (conditioned on the input 

variable w) is not a function of the input variable value when the indicators are 

multivariate normal within taxonomic classes. Anderson (1958) showed that 
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|
xw yw

xy w xy
w

σ σ
σ σ

σ
= −  . 

Permutation of the subscripts gives 

|
xy wy

xw y xw
y

σ σ
σ σ

σ
= −   and 

|
xy xw

yw x yw
x

σ σ
σ σ

σ
= −  . 

Thus, we have three equations in three unknowns (σxy, σwy, σxw). The conditional 

covariances can be estimated by choosing a range of values on the input variable that has 

nearly all members from the same taxonomic class. Possibly the system of equations can 

be solved numerically by the method developed by Brown (1967) as existence of an 

explicit solution is not evident. 

 

X.  Consistency Tests 

It is very important to have adequate consistency tests for any taxometric or 

psychometric theory. For a discussion of the consistency tests and the development of 

certain examples see Meehl (1973) and Golden and Meehl (1973b). Briefly, the purpose of 

the consistency test is to ascertain if the assumptions of the theory are adequate 

approximations of the truth in that the taxon detection is not spurious and the parameter 

estimates are accurate enough for a given substantive problem. 

A very significant result occurred in the context of the preliminary study in the 

detection of schizotypes which illustrates the crucial role of consistency tests. Thirty items 

were selected which discriminated by .30 or more in the difference in item plus-rates 

between individuals already determined to be very likely schizotypes versus those 
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determined to be very likely nonschizotypes. However, when these items were made into a 

single key the normal method estimates of the base-rate and the other latent parameters 

was totally off the mark from numerous other consistent results. The χ2 goodness-of-fit 

value was near the expected value and the general appearance of the fit of the theoretical 

to the observed compound frequency distribution was very good. The average correlation 

within the taxonomic classes turned out to be .5 and subsequent Monte Carlo trials showed 

that this is far too high for the method to work adequately. Thus, what is needed among 

the final set of consistency tests is one which determines if the average within taxonomic 

class item intercorrelation is sufficiently small. 

The most obvious consistency test might be thought to consist of comparing the 

estimated compound distribution with the observed one. While the chi-square quantity 

measures such a discrepancy we do not wish to determine if this value exceeds a critical 

value used for statistical significance but rather if it exceeds a value which is required for 

accurate parameter estimation and non-spurious detection. Clearly it is not sufficient for 

the present purposes to determine if the chi-square value is significant or not at, say, the 

.50 level. The failure of the method with the first male-female key illustrates the need for 

consistency tests more sensitive than this. On the other hand, other artificial and real data 

trials have shown that a highly significant value can result even though parameter 

estimates are quite accurate. More importantly, though, a low value, say near the expected 

value, can easily be obtained even though parameter estimates are totally off the mark as 

was the case in the two cited examples above. Experimentation with the method of 

calculation, such as variation of the interval frequency size, has not led to any 

improvement in the usefulness of the chi-square value as a consistency test. A chi-square 
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goodness-of-fit value for the compound distribution near the expected value or below can 

only be considered as faintly encouraging, but certainly not by any means sufficient for 

confirming the existence of a taxonomy; on the other hand, while a highly significant 

value behooves one to look for further discorroboration of the theory, it does not 

necessarily refute either the existence of a taxonomy or the accuracy of the estimates. In 

short, the chi-square value appears to help very little in determining if the assumptions are 

close enough to the truth. 

A number of consistency tests were developed by Meehl (1965, 1968, 1973), a few 

of which have been studied and modified slightly by the Monte Carlo method and thereby 

shown to work surprisingly well for the maximum covariance theory (Golden and Meehl, 

1973b). Some further consistency tests are developed below. 

A.  The case of a single indicator 

When only a single indicator is available the possibilities for consistency testing are 

limited but there are a few simply derived tests which immediately suggest themselves. 

First, the base-rate weighted taxonomic class means µj should be approximately equal to 

the compound mean µ where 

µ = Σ
j
  pj µj . 

When µ is determined by the above equation then estimation errors in pj and µj, denoted by 

∆pj and ∆µj, cause an error ∆µ. The exact differential of µ is given by 

dµ = Σ
j
  (µj dpj + pj dµj) 

from which it follows that 

∆µ » Σ
j
  (µ̂j ∆pj + p̂j ∆µj) . 

 – 36 –  



Maximum allowable values for estimation errors ∆pj and ∆µj along with the estimates µ̂j 

and p̂j can then be used to estimate the maximum allowable discrepancy between the grand 

mean when calculated as a function of estimates of the latent taxa means and base-rates 

and when calculated directly as a sample mean. Preliminary trials of this consistency test 

indicate that when it is failed the estimates are grossly in error; however, when the test is 

passed there is little assurance that the estimates are accurate enough. For example, taking 

the first male-female key (Table 1) it would be reasonable to require that 

| ∆pm | ≤ .1 , 

| ∆pf | ≤ .1 , 

| ∆µm | = sm »  ŝm = 2.71 and 

| ∆µf | = sf » ŝf = 2.05 . 

Thus the maximum value of ∆µ must be less than (.10)(9.98) + (.10)(14.69) + (.499)(2.71) 

+ (.501)(2.05) = 4.84. The grand mean when calculated from the latent parameter 

estimates (pf µf + pm µm) is (.501)(14.69) + (.499)(9.98) = 12.34 and this differs by only .01 

from the compound sample mean of 12.33; thus the consistency test in this instance is 

easily passed even though the estimate of pf is in error by .110 which according to the 

chosen error limits is not quite acceptable. The test is passed in all the other examples as it 

should be. It appears that further Monte Carlo study will confirm that the test should be 

used only as a preliminary one for early detection of gross errors. 

An analogous test to the above one results from expressing the compound variance 

(rather than the mean) in terms of the taxonomic class means, base-rates, and variances. 

The derivation of the formula for any number of taxonomic classes consists simply of 

repeated application of the variance mixture equation for two taxonomic classes. 
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There is always a limit on the degree to which taxonomic class distributions can 

overlap and still allow for accurate taxonomic detection. It appears that for the present 

method the taxonomic class means must be separated by at least one to one and one-half 

intra-taxonomic class sigma units (Cohen [1966] suggests that a two sigma separation is 

necessary) and that the base-rates for a dichotomous taxonomy must not be more 

disproportionate than .1 and .9. Parameter estimates not meeting these conditions are quite 

possible very erroneous and cannot be trusted without further corroboration. 

If the indicator is a key consisting of the sum of dichotomous items then the 

possibility for consistency testing is greatly increased. First, the condition derived in the 

item selection procedure above in which triplets of covariances are considered should be 

satisfied by all the items of the key or such a selected subset of the original items should 

produce a result consistent with the original key. Second, each item can be used in the 

output role and the many relations between output and input variables developed by Meehl 

(1965, 1968) can be checked to see if they are approximately satisfied. Third, the method 

given above to estimate the intra-taxonomic class covariance by repeatedly solving a set of 

two simultaneous covariance mixture equations can be applied to each item pair. Monte 

Carlo study will show that the average and the variance of these covariance estimates 

cannot exceed certain limits without causing intolerable error; possibly such limits can be 

chosen so that the converse is also true. 

B.  The case of multiple indicators 

When there are several indicators, the possibilities for consistency testing are greatly 

improved by the addition of several tests to those above. A number of such tests are 

developed by Meehl (1968) and a few more are given below. 
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For some taxonomies it should be true that when the method is applied to the 

indicators taken singly, the separate base-rate estimates should be in adequate agreement 

with each other and with the single estimate of the multi-indicator method. Such a 

consistency test does assume that the taxonomies detected for each indicator taken singly 

are the same as one detected when they are taken jointly. Presumably, this assumption is 

sometimes known to be true and sometimes known not to be at all true; of course, in the 

latter case the test cannot be used. 

A preliminary trial in the detection of the schizotype taxon with MMPI keys 

indicates that it will be possible to develop three heterogeneous keys for use with the 

normal method, each having taxonomic class mean differences of nearly two intra-

taxonomic class sigma units. For such a typical situation there exists a large portion of the 

three dimensional indicator hyperspace where nearly all of the individuals belong to the 

taxon. To demonstrate this let x, y, and z be the three indicators and assume that they are 

distributed trivariate normally within the taxon and within the nontaxon class just as the 

normal theory requires. The taxon density function, for example, is given by 

( )
( )

2

1 33 2
1, , exp

22 D
s

xx y zφ
π

 
= − 

 
 

where 

( )

1

2

1
, , 1

1

xy xz

yx yz

zx zy

r r x
x x y z r r y

r r z

−
   
   =    
     

 

and D is the determinant of the correlation matrix. Consider the proportion of the members 

of the taxon with scores such that x > d, y > d and z > d for some cut d. This octant 
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proportion R can be calculated from the following equation if the correlation matrix is 

known and d is specified in intra-taxonomic class sigma units from the taxon mean: 

( )
d d d

R , , d d dx y z x y zφ
∞ ∞ ∞

= ∫ ∫ ∫ . 

The triple integral can be evaluated numerically such as by the Gaussian method. If d is 

zero (each indicator is cut at the taxon mean) then R varies from .125 when the within 

taxon correlations are zero to .266 when these correlations are each .90; generally R is 

roughly a monotonic function of the average of the three correlations. Likewise it can be 

shown that the same quantity for the non-taxon class is less than .006. Thus, for the 

positive octant of the hyperspace formed by cuts at the taxon means it is expected that a 

proportion of the compound sample not be less than .125P + .006(1 – P) and not more 

than .266P + .006(1 – P) where P is the taxon base-rate which has been estimated by the 

normal method. By comparing these limits of the octant proportion with the observed 

value we have a consistency test. In the male-female three key example the limits are 

.125(.61) + .006(.39) = .077 + .002 = .079 and .266(.61) + .006(.39) = .162 + 002 = .164, 

and these surround the observed value of .141. Suffice it to say that numerous other 

closely related consistency tests using different hyperspace regions are suggested by such 

an approach. 

The three indicator system for a dichotomous taxonomy can be checked by another 

procedure which begins by dichotomizing each of the indicators at, say, the estimated 

hitmax cuts. Using the score 1 for scores above hitmax cut and 0 for below or equal, we 

let pxr, pyr and pzr denote the right taxonomic class means and pxl, pyl and pzl the left 

taxonomic class means. Then under the condition of independence within the taxonomic 

class, we have the system of seven equations 
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px = Ppxr + Qpxl 

py = Ppyr + Qpyl 

pz = Ppzr + Qpzl 

pxy = Ppxr pyr + Qpxl pyl 

pxz = Ppxr pzr + Qpxl pzl 

pyz = Ppyr pzr + Qpyl pzl 

pxyz = Ppxr pyr Ppzr + Qpxl pyl pzl 

where the left-side parameters are directly observable and there are seven unknowns on 

the right side. Evidently the equations are not easily solved for an explicit solution, but a 

numerical iterative method by Brown (1967) can be used. The method requires initial 

estimates for the unknowns and these can be obtained from the normal method parameter 

estimates. The consistency tests consist of comparing these initial estimates with the final 

estimates. Initial guesses further off than .10 from the true value appear always to give 

incorrect results but such results appear to be detectable since they have always been 

impossible values (negative and greater than unity probabilities) in trials so far. It remains 

to be determined if the method is robust enough with respect to the independence 

assumption and sampling errors in the compound proportions but preliminary trials are not 

encouraging. Passage of the tests would appear to provide strong corroboration of the 

normal theory. However as the tests were not passed for the three male-female keys, the 

method for solving the equations appears to lack sufficient robustness. 

Another consistency test results from the fact that the sum of two or more normally 

distributed variables is also normally distributed. First the base-rate estimates should be 

the same. If there are three indicators, then there are seven different sets that can be 
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analyzed singly. Second the mean and variance of the sum within a taxonomic class are 

given by 

µ = Σµj 

σ2 = Σ σi
2 + 2  Σ

i ≠ j
 σij 

where the µi and the σi are the within taxonomic class means and sigmas of the individual 

keys and the σij are the within taxonomic covariances for pairs of individual keys. When 

there are only two indicators summed then the single within taxonomic class covariance 

between the two keys can be calculated form the second equation. In view of this 

interesting result, it is noted that the idea of summing keys can be used either primarily to 

estimate the within taxonomic class covariance matrices or as a set of consistency tests, 

possibly both. 

Another consistency test evolves from the fact that in the typical taxonomic situation 

the separation between the latent means is one to two within taxonomic class sigma units. 

With three such indicators the probability of taxonomic class membership determined, 

say, by Bayes’ Rule is most often very high or very low. If the probability of taxon 

membership is regarded as a random variable then the frequency distribution of this 

variable is strongly U-shaped. Preliminary Monte Carlo results indicate that this function 

is more nearly flat when the taxonomic detection is a spurious one. 

When items are randomly assigned to, say, three keys then we can expect that the 

estimates of the latent means and variances should be fairly close from one key to the 

next. It is difficult to derive analytically useful results concerning just how close the 

parameter estimates should be. It is noted that items can be assigned randomly to keys any 

number of times. 
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When constructing keys by randomly assigning taxonomically discriminative items 

to the keys, there results an interesting relationship between the average correlation 

between items of a single key x within a taxonomic class, r–wx, the average correlation 

between items of key x with those of key y within the same taxonomic class, r–bxy, and the 

correlation between two keys within the same taxonomic class, r–xy. McNemar (1963) 

showed that the three average correlations are always related by the formula 

( ) ( )
b

w w1 1
xy

xy
x y

nmr
r

n n n r m m n r
=

+ − + −
 

where n and m are the number of items in keys x and y respectively. If items are randomly 

assigned to the two keys it is reasonable to assume that r–bxy »  r–wx »  r–wy »  r–.  When 

n = m, the formula then simplifies to 

( )1 1xy
nrr
n r

=
+ −

. 

This relationship between rxy and r– shows what the maximum value of r– may be in 

order that rxy is sufficiently small with respect to the (unknown) robustness or the method 

with respect to dependence between x and y within taxonomic classes. In Figure 1, rxy is 

plotted as a function of the key length n for different values of r– and perusal of the graphs 

reveals several interesting results. Since rxy cannot be greater than .5 for the maximum 

covariance theory (Golden and Meehl, 1973b) it is seen that it is necessary that r– < .1 

always and it is necessary that n ≤ 20 for r– = .05. Also, a few artificial data trials have 

shown that the first multi-indicator normal method will not allow r– to be as high as .2, 

possibly not much over .1 for n = 20, an optimal length for discrimination with MMPI 
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keys. Finally it would appear keys should be about as short as possible, which is 15 to 20 

items usually, as shorter keys [shorter than that] begin to strongly violate the normality 

assumption. 

Monte Carlo study is required to obtain precise information on the acceptable areas 

of (n, r––) values. With such results, a nice consistency test will consist of estimating rxy by 

one of the procedures given above, then determining r– from 

( )1
xy

xy

r
n n r− −

 , 

and then checking to see if this value is low enough for the taxometric method being used. 

However, as indicated above, such consistency tests should be difficult to pass when using 

MMPI items as such a method of key construction will be likely to yield r– and r–xy values 

are far too large. 

The final consistency test to be given here consists of comparing two ways of 

estimating the hitmax cut between two taxonomic classes. Unlike the numerous other 

approximative hitmax-cut estimation methods developed in previous reports (Meehl, 

1965, 1968), the present method requires the indicator within taxonomic class 

distributions to be quasi-normally distributed. Just as in the former methods, it is assumed 

that the output indicator y and input indicator x are independent within taxonomic class. 

There is no restriction on the within taxonomic class distributions of the output indicator, 

so an item or a key not meeting the normality assumption could be used for example. If 

one considers the manifest output mean as a function of the input interval, denoted by y–(x), 

then it will be shown that y–(x) usually has a point of inflection very near or at the hitmax-

cut. 
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 Figure 1. The Pearson correlation between two keys as a function of the common keylength 
for different values of the common average inter-item correlation within key, r–. 
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The number of right-taxonomic class members in interval x is approximately 

( )2 2
r r2r

r
r

( )
2

xNf x e µ σ

πσ
− −=  ; 

likewise 

( )2 2
l l2l

l
l

( )
2

xNf x e µ σ

πσ
− −= . 

At the hitmax-cut h, fl(h) = fr(h) or 

( ) ( )2 22 2
l l rh 2 h 2l r

l r

N Ne e rµ σ µ σ

σ σ
− − − −=  

Taking the natural logarithm of each side and rearranging terms, we have 

( ) ( )2 2
r l r l

2 2
r l

h h
ln

2 2
N
N

µ µ σ
σ σ

− −
− =

l rσ
, 

or 

(σl
2 – σr

2) h2 + (2µl σr
2 – 2µr σl

2) h + µr
2 σl

2 – µl
2 σr

2 – 2 σr σl
2 ln r l

l r

N
N

σ
σ

 = 0 

Since the above equation is a quadratic function in h, it can be solved by the quadratic 

formula to give h explicitly in terms of the six other latent parameters. 

The derivation of the second method for determining h consists of writing 

2

2

d ( )
dx h

y x

x =
 in terms of the same latent parameters. Let the manifest output mean  

for input interval x be written as 

y–x = px y–r + (1 – px) y–l   or   y–x = (y–r – y–l) px – y–l 

where px is the proportion of the individuals in interval x who are members of the right 

taxonomic class, and y–r and y–l are the two taxonomic class means. It follows that 
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( )r l
d d
d d

x xy py y
x x

= −   and  ( )
2 2

r l2 2

d d
d d

x xy py y
x x

= −  . 
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l r

x
x

x x
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f f

=
+

, we have 
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and 

( )

( )

2 2
r l l r l

l r l r l l2 22

32
l r

d d d d d d2
d d d d d dd

d

x x x x x
x x x x x x

x

x x

rxf f f f ff f f f f f f
x x x x xp

x f f
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In order to simplify the above expression, we write 

( )
2

d A
d

x
x x

xf
xf f

x
µ

σ
− −

= =   and  ( )2 22

2 4

d B
d

x
x x

xf
xf f

x
µ σ
σ

− −
= =  . 

The numerator for 
2

2

d
d

xf
x

 can now be written as 

(Br fl fr – Bl fl fr)(fl + fr) + 2(Al fl + Ar fr)(Al fl fr – Ar fr fl) 

which simplifies to 

{fl fr (Br – Bl)(fl + fr) + 2(Al fl + Ar fr)(Al – Ar)} 

which can be rewritten as 

fl fr (Cl fl + Cr fr) 

where 

Cl = (Br – Bl) + 2Al (Al – Ar)   and   Cr = (Br – Bl) + 2Ar (Al – Ar) . 

At hitmax h, fl = fr = fh, we have 

( ) ( ) ( )( )32
h l r l r l r

l r2 3
h

C C C Cd
dx 8 8h

x f y yy y y
fx

+ − +
= − =

=
 . 
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Since Cl + Cr = 2(Br – Bl) + 2Al
2 – Ar

2 which simplifies to 2
l r

2 2
σ σ

− 2  we have 

( ) 2 22
l r r l

2 2
r l

d
dx 4h

y yy

x

σ σ
σ σ

− −=
=

2  

which is precisely zero only when σr = σl. Generally, with estimates of σ̂r and σ̂l available 

one can use a numerical differentiation method to determine where 
2

2

d
dx

y  is closest to 

( ) 2 2
l r r

2 2
r l4

y y σ σ
σ σ

− − l  and this should be adequately close to the previous hitmax-cut estimate. 

The same method can be applied using just the first derivative but it would appear 

that the second derivative can be more easily evaluated near hitmax by a numerical 

method as it is close to zero at hitmax when variances are nearly equal. In either method 

the accuracy of the hitmax estimate will be limited by that of the numerical differentiation 

method when applied to sample data and this is only determinable by Monte Carlo study. 
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