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I. Basic Background Rationale

The parameter estimation procedures of the taxometric theories are complemented
by consistency tests which describe how well the theory fits the data. The major purposes
of consistency tests are to avoid spurious taxometric findings (e.g., the method indicates
there is a taxon when, if fact, there is nothing of the sort) and to detect when parameter
estimates are too erroneous for the particular purposes of the study. Consistency testing in
application of a mathematical theory is just as obviously required and is just as much a
matter of simple common sense, as in other endeavors. For example, the builders of the
MMPI realized that validity keys were required. However, while anyone would know that
some people randomly respond and lie and so on when taking the MMPI, it is curious
that few psychologists or sociologists act as if Nature could, on occasion, be more
devious than mathematicians require.

In general, any taxometric theory can be thought of as a set of equations relating a
set of latent parameters to a set of manifest parameters. Some of these equations may
involve only latent parameters and others involve only manifest parameters. Most
equations of most immediate concern in the development of a theory involve both kinds
of parameters.

There are two special types of equations: (A) the assumptions and (B) the derived
equations which express the latent parameters as explicit functions of the manifest
parameters. Traditionally, the psychometrician usually is satisfied with just the

development of B from A. while such a feat may require a high degree of mathematical



competence and creativity and can be regarded as the solutions of the most immediate
importance, there remains further mathematical derivation to prepare the theory for
application to substantive problems. Such derivation can be roughly described to be that
of deriving all further relations between the parameters that one is able to. These latter
equations can be used for determining how well the theory fits the data of the real
phenomena, hence are called the (C) consistency equations. If the assumptions A are
roughly correct and the estimates of the manifest parameters (obtained from the data, of
course) and of the latent parameters (by the calculations given by B) are roughly correct,
then substitution of the parameter estimates into C will show that they roughly satisfy
each equation of type C.

There are at least four sources of error which cause the consistency equations to be
only approximately satisfied. First, the assumptions A are always mathematical
idealizations and never strictly true for real phenomena, and therefore it is clear that the
estimates resulting from B will contain such error. Second, the manifest parameters
contain sampling error (between individuals) and measurement error (within individuals);
hence, the latent parameter estimates contain sampling and measurement error (since they
are functions of the manifest parameters as given by B). Third, the calculation method
used in B can be one that according to the underlying mathematical theory gives at best
an approximate solution to the equations resulting from A.

Theoretically, sampling error, measurement error and solution error can be assessed

rather directly and can be reduce to (nearly) any arbitrarily small size. To reduce



(a) sampling error, one can increase the sample size, (b) measurement error, one can
resort to reliability theory, factor analysis, and item selection methods or (c¢) solution
error, one can, for example, continue an iterative calculation procedure until convergence
conditions are adequately satisfied. However, "assumption error" does not seem to be of
this same sort in that its size cannot be directly assessed (an assumption as opposed to a
hypothesis is by definition not directly testable) and it is not reducible to (nearly) any
arbitrarily small size by a systematic procedure. Naturally there is no corresponding
theory of verisimilitude to numerically assess assumption error.

Suppose that only assumption error is a matter of concern; that is, all other sources
of error have been eliminated. Presumably continual revision of the theory so that the
parameter estimates of B become closer to perfect solutions of C would increase the
verisimilitude of the theory assuming that the consistency equations are chosen correctly
so as to provide sufficient testing of the fit of the theory to the data. The consistency
testing development might then attempt to meet criteria such as the following:

(a) there is one for as many subsets of the assumptions as possible,

(b) they are not redundant in that they are derivable from B; even the addition of
weak assumptions to B should not allow the derivability of C,

(c) they follow as directly from A as does B and, in fact, might be partially
interchangeable with B,

(d) they are adequately sensitive to assumption errors that are most probable,



(e) they are adequately sensitive to assumption errors that are most troublesome in
that they cause intolerable errors in important parameter estimates,
(f) they provide clues as to how the theory might be revised to obtain a better fit (by
pointing out the set of disparate assumptions with the aid of criterion (a)), and
(g) they indicate when the theory is totally off the mark and should not be used at all.
With the current state of the art of mathematical theory building in the area of
psychopathology measurement it would be a major contribution to meet even the last of
these criteria.

Unfortunately, formal mathematical analysis in the way of determining whether or
not consistency tests satisfy the above criteria for a complicated taxometric theory is
always terribly difficult and usually impossible in a practical sense. Fortunately, however,
the Monte Carlo method can be used to perform an approximative analysis which is good
enough for nearly all purposes. In this method, unknown mathematical functions are
approximately described by observing the behavior of the dependent variables resulting
from systematic variation in the independent variables. Most of the above criteria for
evaluating consistency tests can be given in terms of properties of various mathematical
functions. Even though these functions are terribly complicated when given explicitly or

implicitly, they can be easily studied for our purposes by the Monte Carlo method.



I1. General Design of the Monte Carlo Experiment
The basic idea of the design proposed here is very simple. Suppose 6; are the
(population) parameters of a particular taxonomic structure. Suppose further, that we are
able to construct an artificial data (variable x subject) matrix which can be regarded as a
sample from some specified population given in terms of 6;’s. We can then analyze the

artificial data by the taxometric method and observe the errors (g;)' of the parameter
estimates (0;) and the degree of approximations (A;) obtained in the consistency
equations. It will be noted that for the taxometric theory to work correctly it is necessary

that:

(a) the &'s and the A;'s be sufficiently small (the &'s are set in accordance with the
substantive problem estimation accuracy requirements and the A; by a method

given below) or

(b) if not, one or more of the A;'s exceed critical values ¢; (one or more consistency

tests are failed).
The critical values (c;) are usually determined analytically in the following manner. The
consistency equation can usually be written in the form
Fi (01, 62, ... 0,) =0.

Then the exact differential is given by

oF.
dF =S —14dp
: Zﬁpi '

" Let a; denote an arbitrary but fixed vector element, then the notation (a;) will be used to denote
the vector (aj, a, as, ... a,).



hence if we define A; by

we can determine what Aj will be for small 6; errors ¢; for any given value of 6;. Usually
it is sufficient to choose for the cut-value ¢; an upper bound for the A; values which

result from considering maximally tolerable values for the A6; and a sufficiently wide
variety of 0; values; this procedure normally can be handled analytically but the Monte
Carlo method can be resorted to if necessary.

To study sampling error for a particular value of 6; a number of independent data

samples are generated and analyzed and appropriate & x A; scatter plots are studied to

see if conditions (a) and (b), given above, are met.
One is not interested in one value of 0; but in all values which are at least remotely
possible. The sample size is made sufficiently large so that it need not be a matter of

concern. Here each point of a & x A, scatter plot represents a value of 6;. The problem

then is to select a finite and reasonably small set of 0; values which give a sufficiently

accurate picture of the & X A, relationship for all reasonably likely taxonomic situations

(or 6; values). There is no firm analytical procedure offered here for adequately sampling
taxonomic situations but as will be discussed below, the method does not ultimately rely
on an exhaustive sampling.

It was implied above that the & x A, relationship be viewed in terms of a four-fold

table. However, to the extent that one's substantive theory testing is a matter of

determining the degree of fit within the context of discovery rather than making



a dichotomous decision (accept, reject) it would be better to record the entire & x A,

scatter plot or summary statistics of it.
Each sample of a taxonomic situation selected produces a value of ¢ and a value of

A;. An interesting possibility for determining major causes of error in a taxometric
method consists of factor analysis of g and A i variables, the g; variables alone and the A i

variables alone. In this instance we will know if the factors are real, interpretable, and

useful for if they are they will lead to new insights about the method.

III. The Requirement of the Random Number Generator Method

It remains to determine how the artificial data are to be generated. In this section are
discussed the various primary considerations which lead to the development of the
proposed generating method.

The various latent taxonomic detection methods developed so far use either scales
(for example, see Golden ef al., 1974b) or dichotomous items (for example, see Golden et
al., 1974c) as indicators. In practice, usually the scales will simply be sums of
dichotomous items such as those of the MMPI (called keys herein). The methods usually
rest on an assumption which requires that correlations between the indicators be zero
within each taxonic class. In the case of keys this condition is met if the items of one key
are each independent of those of another. The normal theory (Golden et al., 1974b) —
both the maximum likelihood and minimal chi-square solutions — requires that the

within-taxonomic class distributions be normal; this condition also is obtained when the



items of the key are independent within taxonomic class. In general, all of the major
assumptions of any of these theories are derivable from the grand assumption that the
within-taxonomic class item correlations are all perfectly zero.

In reality, items are never perfectly independent within taxonomic class, of course,
and it is necessary to know how robust a method is with respect to this assumption. That
is, it is desirable to know how highly and in what ways or patterns items can be correlated
within taxonomic class without seriously affecting the method's estimates of the latent
parameters describing the taxonomic situation.

The problem then is to generate artificial data that simulate rea/ Bernoulli variables
with specified degrees and patterns of dependency. Since the assumptions of the various
taxometric theories can all be given in terms of phi-correlations between items within
taxonomic class, it should be simple to specify these. Thus, the simple-to-use method
proposed here requires only the specification of the single parameter for each Bernoulli
variable (the mean or proportion) and the correlation matrix for the set of Bernoulli

variables.

IV. Analytical Development of a Random Number Generator Method
Suppose that z, are n Bernoulli random variables which have the value 1 with
probability p;' and the value 0 with probability 1 —p;,i=1,2, 3, ..., n. Let the joint

proportion matrix be denoted by

" In this development all constants are population parameters.
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b,

P P
Ps;i Py Ps
pnl pn2 ...... pn

the phi-correlation coefficient matrix by ¢ = ¢, where

and the vector of variable parameters p = (p1, p2, ..., Pn)- The problem, then, is to

generate numbers simulating Bernoulli variables with given ¢ and p matrices, or,

equivantly, with a given p matrix.

nxn

nxn

Pi; — PiP;

b \/pi(l—pi)pj (l_pj)

1xn

Let X, (1=1, 2, 3, ..., n) be n standardized normal random variables (with mean

equal to zero and unit variance) with intercorrelations p;; (where 1, =1, 2, 3, ..., n). Then

we construct n Bernoulli variables z, by

where

{1 if F(x,)<p

0 if F(x;)>p,

(1)



It follows that

p;=E(% 2,)=Pr(% =land z =1)
:Pr(F(fgi)Spi and F(ij)Spj)

1 L P 1
:WIZ ,Ec exp{m(x2 _2pinY+y2 )}dxdy 2
ij

which is the bivariate normal density function for two standard variables (p. 33, Kendall
1952).
Since

P
? +_pipj7 (3)

E(77)=p,=4, {Pi (1-p))p; (l_pj)}
it follows that given ¢, p; and p;, which are the parameters we wish to specify, then pj;
can be determined by (3) and, next, p;; is determined by solution of (2) for p;;. Suppose it
were possible to solve (2) explicitly for p;; such that

pij = F(¢ij, pis pi),

then given ¢j and (p1, p2, ..., pn) one could determine p;;. Leaving this matter of

determining p;; for the moment, we observe that since the X, are distributed multivariate
normally they can be generated by a method such as the one presented below. The
cumulative density for each value of each X, is then determined and is compared with p;
according to (1) to determine the value of the Bernoulli variable Zz, . This completes the

process of generating the Z, values for specified ¢ and p matrices.

nxn 1xn

It remains, first, to describe a method for simulation of a multivariate normal

distribution given the correlation matrix and the variable means and variances.

— 10—



Let X = (X1, X2, ... Xn) be an n-tuple random vector such that each X, is a standardized
nxl

random variable (with zero mean and unit variance) and let the covariance between X,

and X; be oj; for each i,j pair and define

1 o, O
Z: Gy
nxn :
o) 1

as the given covariance matrix. Let y be a set of such variates such that the covariance

nxl

matrix is I, the identity matrix. Suppose that there exists a matrix T , for a given X, such

nxn

that x = T -y .Thus

nxl nxXn .,

5 :E(x.x'):E{(T-y)-(TY)'}

nxn nxl 1xn
=E(Ty " y'T) = TE(yy)T';

since E(yy')=1,wehave X =T - T’

and it is seen that T is the matrix such that the product of it and its transpose is the given
Y. When an unique solution for T exists it can be found by a method given by Anderson
(1957). The y; can be simulated by use of any of several well-known methods for
univariate normal variables.

Finally, it remains to determine p;; since it is not easily found as an explicit function
of ¢jj, pi and p;. The function is adequately approximated by tables of corresponding
values of pj;, ¢;j and p;; (given in Appendix B). These tables were constructed by

specifying values of p;, p; and p;; and determining p;; and ¢;; from (2) and (3).
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The parameters p; and p; were allowed to vary from 0.1 to 0.9 in increments of 0.1 and p;;
from 0 to min(p;, p;) in increments of 0.025. The integration in (2) was performed by a
numerical method (see pp. 887 and 916 of Abramowitz and Stegan, 1964).

This completes the development of the method. The basic idea is simply to use the
multivariate normal distribution, dichotomize by cutting deviates corresponding to
cummulative densities p; and to preadjust the p;; values for the resulting shrinkage caused
by dichotomization.

In order to use the generator it is necessary to specify ¢; and p then use the table

Ixn
to determine p;; which is required input for the subroutine (described in Appendix A). It

should be noted that not all values for ¢;; and p are acceptable. A straightforward

Ixn
procedure is to pick the p; values first, then pick ¢;; values such that
pipi = pij = min(p;, p;)

or

» min (pijpj>_pipj
e pi(l_pi)pj(l_pj) .

It can also be shown from a result given by McNemar (p. 166, 1962) that it is required

that for each 1,j pair

\/1_¢112< Vl_¢j2k _¢ik¢jk <V1_¢ii \/1_¢j2k + Py jk

for all k (k #1 #j). Although the above two conditions are necessary ones, it has not been

shown that they are sufficient.
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Example

Suppose we wish to generate numbers for five Bernoulli variables with the

following parameter values:

pi = (.320, .780, .880, .100, .510)
and
1.00

0.32 1.00
¢i- 031 037 1.00
029 0.15 0.12 1.00
034 0.09 026 0.06 1.00
From appendix B we find that
1.00
0.68 1.00
pi= 0.87 0.64 1.00
0.57 049 0.65 1.00
0.53 0.17 054 0.13 1.00
The observed sample correlation matrices for two independently generated samples
of size 1000 are given below.
Sample 1 1.00
0.34 1.00

~

¢;- 026 040 1.00

031 0.18 0.13 1.00
033 0.10 0.23 0.05 1.00

Sample 2 1.00
0.27 1.00

>

¢;- 025 032 1.00

031 0.16 0.13 1.00
033 0.10 0.27 0.07 1.00

— 13—



Comparison of the sample matrices with specified population illustrates the fact that
the method works accurately enough for study of taxometrlc methods to be used in
psychopathology. It is true, however, that some of the elements of these matrices depart
significantly from the specified values. This is apparently due to error in the integration
to obtain ¢j; as a function of p;; and error from the interpolation required to obtain pj;
values for corresponding ¢;; values.

The method is essentially the same as the multivariate normal one except that each
standard normal variate y; is dichotomized by a cut at p;. The only problem results from
the fact that any given value for the p;; matrix does not result in the same value for the ¢;
matrix (except in the special case where they each are the identity matrix) as the latter
matrix elements are very roughly two-thirds the size of the former ones. Thus, it is simply
necessary to adjust the p;; values for this shrinkage so that the ¢;; values are of the size
desired.

When p; and p; are both between .30 and.70 and ¢;; is between 0 and 0.5, there
appears to be an approximate linear relation between p;j and ¢;; given roughly by
¢ij = .60p;; or p; = 1.67¢; although it has not been determined how accurate the
relationship is. It would be interesting to sample uniformly from the lines of the table in
Appendix B and determine the accuracy of the multiple regression equation for predicting
pij from ¢y, pi and p;. If everywhere accurate enough such an equation could replace the

table. Possibly a more promising way to express p;; as a function of ¢, p; and p;,

— 14—



however, is to use the formula for the tetrachloric correlation coefficient which can be put
in the form ¢;; = f(pj;, pi, p;) where f is an infinite series. To obtain f !, Newton's or

Horner's methods can be used according to McNemar (pp. 193ff, 1962).

V. Specification of the Taxonomic Class Distribution

There are at least three major properties of a taxometric theory which are of interest
to study. First, it is of interest to determine the power of the method for accurately
detecting taxonomies which have (a) various degrees of taxonomic class distribution
overlap and (b) various degrees and kinds of assumption departures. Second, it is of
interest to determine the ability of the method to avoid spurious taxon detection under
any conditions. Third, it is of interest to determine if the consistency tests correctly
identify accurate vs. inaccurate parameter estimates, and spurious vs. non-spurious
detection. According to the nature of the derivation of the formulae for the estimation of
the latent parameters, it would appear to clearly follow that if the assumptions are
satisfied well enough then the method will work well enough with respect to the above
three matters of concern. In other words, to study the major properties of a taxometric
theory requires only a study in what happens under systematic departure from the ideal
conditions specified by the assumptions. Hence we next consider how the p; and ¢;;
values can be selected in order to do this.

As the generator method is intended to be used separately for each taxomomic
class, the various properties of the indicator distributions will be considered as functions

of the specifiable parameters p; and ¢;; for just a single taxonomic class.

— 15—



a) Indicator Mean

The mean of a key is simply Zp;.

b) Indicator Variance

The variance of a key is given by

o’ = 2pq;+2 X G
17]
(i)

where cjj is the covariance between items i and j. This formula can be rewritten as

o’ =2p,q; +2 IZJ ¢ij\/pi(1_pi)pj(1_pj)
(i#])

If p; = p for all i then
o’ = npq+n(n—1)pq5
where ¢ is the average of the @ij's. It is seen, then, that when the variance of a key is to
be controlled it is helpful to have either ¢;; = 0 or p; = p.
By systematic variation of the means and variance of each taxonomic class
distribution, the effects of taxonomic class distribution overlap and ratio of taxonomic

class variances can be studied.

c¢) Indicator Skewness and Kurtosis

If the ¢;; are all zero then the resulting distribution is quasi-normal. It is not
necessary that the pi's be equal (for proof see p. 24ff, Golden and Meehl, 1973a). As the
¢i; are made to depart positively from zero in various ways, evidently, the distribution
can be made skewed in either direction, platykurtic or leptokurtic, bimodal, U-shaped or

J-shaped.

—_ 16—



d) Correlation Between Two Indicators

If the Indicators x and y are keys of length n, with average within-key interitem

correlations @, and (Zwy , and with an average between-key interitem correlation (bey

then McNemar (p. 207, 1962) showed that the correlation between the two keys is given
by
r = 1’12¢Tbxy
Xy \/n +(n-1)g,, \/n +(n-1)4,,

when all items of both keys have the same p; value. Thus, by controlling ¢,

wX ?

q?wy and
¢7be we can control ryy. In Figure 1 where ¢, = ¢7wy = ¢7be = ¢ itis seen, for example,

that for 20 item keys it is necessary to keep ¢ below .05 in order that r,y be less than 0.5
which is usually required by the maximum covariance theory (Golden and Meehl,
1973b). According to limited Monte Carlo evidence, the normal theory (Golden et al.,
1974b) requires that r,, be less than 0.8 or # be less than .20.

The base-rate of a taxonomic class is handled differently than the other parameters.
Suppose that the compound sample size is to be N and the population taxonomic class

proportion is p;. The sample proportion p; is distributed normally with mean p; and

variance pj(1 — p;)/N; hence a univariate normal random number generator can be used to
obtain p, and N;= p;N.

In specitying the p;i's and the ¢;’s there is a more subtle consideration which must
be made. This consideration results from the fact that the number of times the generator is
used to create a data sample to be mixed with the others is not necessarily the number of
taxometric classes if the taxonomic situation is as described by the taxometric theories

mentioned herein. It could be that p; and ¢;; values chosen are approximately those
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Pﬂar‘sgr- correlation between fthe two keys

L)
T —

Figure 1. The Pearson correlation between two keys as a function of the common

keylength for different values of the common average interitem correlation

within key, ¢ .
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of, say, a compound group consisting of two (or more) taxonomic classes. If such an error
is made, then, among other things, the actual number of taxonomic classes is at least one
more than it is thought to be. To demonstrate this possibility, suppose that a compound
group consists of two taxonomic classes, denoted by subscripts 1 and 2, one with base-
rate P, and within each class the item covariances are all zero. Then the covariances for
the compound group are given by
¢ij = PQ(pi2 — pin)(Pi2 — Pjn)-

Thus, if there exist values of P, pi;, and piz (1= 1, 2, ..., n) which satisfy the equations

i pi(1 — pi) pi(1 = py) = PQ(pi2 — pin)(piz2 — Pin)s

pi=Ppi+Qpii and

pi=Ppp+Qpi
where the p;’s, p;'s and ¢;; 's are specified, then the data of two taxonomic classes are
simulated rather than that of one. It should be noted that the equations need be satisfied

only in the approximate sense as would be the case for two real taxometric classes. There

n n(n+1) . .
are 5 +n= 5 such equations whereas the number of unknowns P, pi», and pj; is

only 2n + 1. Therefore, the system is usually well overdetermined and a solution should
not accidentally happen to exist due to sampling error. If a method does produce such a
too-many-taxa result, the above equations can be resorted to in order to see if the method-

produced suspected parameter estimates are approximative solutions.

— 19—



How one can best take into account all the relations concerning the ¢;’s and the p;’s
simultaneously remains to be determined. Usually there is no problem in picking the p;’s,
but the selection of the ¢;;’s can become complex. We typically want to control
simultaneously for variances, general distribution shapes, covariation between indicators,
and covariation within indicators as each has to do with a kind of manifestation of
departure from the ideal condition in which all the ¢;’s are zero. It is necessary that
indicator distributions be specified in terms of skewness, variance, intercorrelatlon,
homogeneity and the like as these are the parameters, in terms of which we have some
knowledge as to the nature of real distributions. Further, we cannot be concerned about
how well the taxometric method works for every single set of values of the ¢;; matrices
even with each matrix element restricted to just three values as there are just far too many
combinations to make this feasible. There are two queries then: “What are the algebraic
procedures specifying the ¢;’s for getting any desired multi-indicator distribution given
in terms of skewness, homogeniety, and the like?”” and “How can such procedures be
made quick and simple to use?”. One approach would be to select ¢;; and p; values semi-
randomly and then record the resulting indicator distributions and descriptive statistics
along with the p; and ¢;; values. (We assume here again that N is sufficiently large so that
sampling error need not be of concern.) This procedure would be continued until either
we have a catalogue of every kind of multi-indicator distribution we might wish to use or
until we are not able to generate a new kind of distribution. This may seem like an
ambitious task but it would appear that there are not more than a few hundred

qualitatively different appearing distributions for two or three indicators.

20—



VI. Simulation of Real Data
Another question about the method stems from the obvious fact that it does not
allow or require use of all of the degrees of freedom available in specifying a taxonomic
class distribution. A population taxonomic class distribution is uniquely specified in
terms of the proportions of individuals for each of the 2" different vectors of item
responses (z1, 22, 73, ..., Z,). Since items are restricted to be dichotomous, we have 2" — 1

degrees of freedom in specifying a distribution. The random number generator method

n
requires specification of only [J independent values of ¢; and n independent values of

pi or n(nT—l) +n= n(nT+1) independent parameter values all together. The quantity
. n(n+1) . .
2" — ————1 is greater than zero for n > 3 and is very large for common values of n

2
in taxometric work. For example, if n = 10, the quantity is 1024 — 55 — 1 = 968 and there
are 968 degrees of freedom used in some unknown manner by the generator method. In
other words, the method imposes (hidden) constraints of an unknown nature that require a
large number of degrees of freedom. This leads one to wonder just what sort of
distributions can be generated by the method. This question remains even though the
discussion of the preceding section indicates that parameters can somehow be specified to
obtain any sort of assumption departure one might conceivably desire. The reason being

that the familiar properties of distributions such as variance, kurtosis, homogeneity, and
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the like may not include all of the important ones to be considered with regard to
assumption violation for a taxometric theory.

Since what we ultimately wish to do is simulate real distributions, it would be of
interest to see if this can be done for a large variety of real taxa, real non-taxa and, since
there is a shortage of proven instances of these, of real criterion group distributions. The
comparison would be in terms of (a) the familiar descriptive statistics and (b) the various
important taxonomic parameter estimates resulting from analyzing compound groups of
pairs of real taxonomic class distributions. If it proves possible to obtain nearly the same
results for real and artificial data for a large variety of situations then one would have
more confidence that the method is capable of adequate simulation of real distributions
for the present purposes. It is of crucial importance that there obtain a positive result here
especially since it is not known how the unaccounted for degrees of freedom are absorbed
by the method. In intuitive language, the suspicious possibility which must be dismissed
is that the method cannot generate onerous distributions like some or many or most real
ones are and the Monte Carlo study of a taxometric method with gentle and tame
distributions is not sufficiently tough and is, therefore, unilluminating.

It might be possible to resolve the above problem in the following way. Suppose
some real data are analyzed by a taxometric theory and a taxonomy is detected with all
consistency tests passed. We then classify individuals into, say, two taxonomic classes,

denoted by s and n, and determine the misclassification rates, R; and R,, by a method
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given In Golden and Meehl (p. 31ff, 1973a). The interitem covariances for each
classification group, ci; and cy;j, are given by
ciij = Rycgjj + (1 = Ry) Cojj + Ri(1 = Ri)(psi = pai)(Psj — Pj)
Caij = RaCgij + (1 = R2) Cajj + Ro(1 — Ro)(psi — Pui)(Psj — Pnj)
which can be solved for the taxonomic class covariances cg;; and cy;; once the pgi’s and
pni’s have been obtained by simultaneously solving the pair of equations
pii=Ripsi+ (1 -Ri)pn and
p2i = Rapsi + (1 = R2) pui -
Using the resulting intra-taxonomic class correlation values, we use the random number
generator method to generate a sample of the same size which is then analyzed by the
taxometric method. If the consistency test and parameter estimation results are
sufficiently close to the real data ones we need not doubt the random number generator
method at least in this instance. Generating several such artificial samples would help
determine how much sampling error must be considered.

Even though a detected taxonomic situation is simulated very well, the detection
still could be inaccurate or spurious. Adequate simulation is evidently just a necessary
condition for accurate and non-spurious detection.

In summary, the Monte Carlo method is resorted to for two quite different
procedures. First, it is used for the approximation of the functions relating parameter
estimate errors and consistency function values. Second, it is used to simulate the

estimated taxonomic situation resulting from analysis of real data by a taxometric
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method. Each of the two Monte Carlo procedures result in requirements, which are
considered as necessary for the existence of a real taxonomy with parameter values as

estimated by a taxometric method.
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Appendix A

Subroutine for Random Number Generator



1. Instructions for use of the subroutine

Multivariate Bernoulli Random
Number Generator

Subroutine DEPBNG

a) CALL DEPBNG(IFLAG, Y, SIGMA, T, M, N, SEED, P)
IFLAG: an integer input parameter
If IFLAG < 0, a value of SEED and the transformed covariance matrix
are produced,
If IFLAG = 0, the transformed covariance matrix is produced,
If IFLAG > 0, the array Y is filled with N + M random numbers; SEED
is not specified by the user.
(N: number of observations)
(M: number of variables)
There are at least two calls needed for this routine. The first with
IFLAG < 0 initializes the routine and the second or any later calls with
IFLAG > 0 generates random vectors.
Y: a real output array, dimensioned at least N - M which is filled
with N random vectors on a call with IFLAG > 0.
SIGMA: an input-output array, dimensioned at least M - M.
When IFLAG < 0, sigma contains the lower triangle of the
correlation matrix for the multivariate normal random
variables. However, when IFLAG 2 0, It contains a
transformation of the correlation matrix. Between the initial
call and the following calls, SIGMA should not be changed.
T: a scratch array with dimension N
M: an integer input parameter which is the number of Bernoulli
random variables

N: an integer input parameter which is the sample size
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SEED: an input-output variable which keeps the current location in the

sequence of numbers being generated. SEED is changed by the
subroutine during each call after the initial one. It should not
be changed by the user after the first call, but can be specified
at the initial call if desired.

P: an input array, dimensioned at least M, which contains the
Bernoulli variable parameters. 0 < P; < 1 for
i=1, 2,., M.

Space required: CM = 3700y

Timing on CDC 6600 computer:

5 variables, 1000 observations: 981 milliseconds

5 variables, 5000 observations: 4897 milliseconds
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2. Listing of the subroutine

SUBROUTINE DEPBNG (IFLAG,Y,C,G,M,N,SEED, P)

C****S, TYAN---MULTIVARIATE BERNOULLI RANDOM NUMBER GENERATOR
C IFLAG = NEGATIVE INTEGER = GENERATE THE SEED AND
C TRANSFORM THE CORRECTION MATRIX
C = 0 = TRANSFORM THE CORRELATION MATRIX ONLY
C =POSITIVE INTEGER=GENERATE THE RANDOM NUMBERS
C C = THE CORRELATION MATRIX OF THE SIZE M*M, THE
C DIAGONAL ELEMENTS SHOULD BE ONES
C P = THE VECTOR OF THE BERNOULLI VARIABLE PARAMETERS
C Y = THE OUTPUT MATRIX OF SIZE N*M FOR THE RANDOM
C VECTORS
C M = THE NUMBER OF VARIABLES
C N = SAMPLE SIZE
C****G = SCRATCH ARRAY WITH TEMPORARY STORAGE OF SIZE AT LEAST N
DIMENSION Y (N,M),C(M,M),G(N),P (M)

IF (IFLAG) 100,200,300
100 CALL NORMAL (IFLAG, Y, SEED)
C****x****PERFORM A DIAGONAL FACTORING OF C
200 ER=6HM.LT.1

IF(M.LT.1)GO TO 250

EPS=C(1,1)

DO 210 I=1,M
210 IF(C(I,I).GT.EPS)EPS=C(I,I)

EPS=EPS*1.0E-10 $ ER=7HC-NEG.

DO 220 I=1,M

T=C(I,I) $ IF(T.GT.EPS)GO TO 222

IF(T.LT.-EPS)GO TO 250
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DO 221 J=1,M
221 C(J,1)=0.
GO TO 220
222 T=SQRT (T)
C(I,I)=T $ IF(I.GE.M)RETURN
T=1./T $ JJ=I+1
DO 225 J=JJ,M
C(J,I)=C(J,I)*T
225 C(1,J)=0.
DO 228 J=JJ,M
T=C(J, I)
DO 228 K=J,M
228 C(K,J)=C(K,J)-C(K,I)*T
220 CONTINUE
RETURN
CxX*x*xxxxxxx*ERROR PRINT
250 PRINT 1,ER

1 FORMAT (1X99 (1H*) /12HOERROR, A8)

STOP
300 II=M*N
CALL NORMAL (II,Y,SEED)
DO 350 I=1,M
DO 352 K=1,N
352 G(K)=0.
IM=JM=M-I+1 $ II=0
DO 355 J=1,IM
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DO 354 K=1,N
II= II+1
354 G(K)=G (K)+Y (II
355 JM=JM+M
II=(IM-1)*N
DO 356 K=1,N
II=II+1
356 Y (II)=G(K)
350 CONTINUE
DO 360 JJ=1,N
J=JJ
DO 360 NO=1,M
X=CDFEN (Y (J) )
IF (X.LE.P (NO)
360 J=J+N
RETURN
END

) *C (JIM)

$ Y (J)=0.

)Y (J)=1.
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Subroutine NORMAL generates pseudo-normal deviates with zero mean
and unit variance. The arguments IFLAG, Y, and SEED are defined above.
Subroutine CDEFN calculates the cumulative normal density for a given

standard deviant which is the argument.
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APPENDIX B

Tables giving p;; as a function of

pi, pj> and ¢



pPi= .10 b= .10

Pij by Pij
.010 —-.000 .000
011 .009 .025
012 018 .050
012 027 .075
.013 .037 .100
.014 .047 125
.015 .058 .150
.016 .068 175
.017 .080 .200
018 .091 225
.019 .103 250
.020 116 275
.022 .129 300
.023 .142 325
.024 156 350
.025 .170 375
.027 185 400
.028 .200 425
.029 215 450
.031 232 475
.032 248 .500
.034 266 525
.036 284 .550
.037 302 575
.039 322 .600
.041 342 .625
.043 363 .650
.045 385 675
.047 408 .700
.049 432 725
.051 458 750
.054 485 175
.056 S13 .800
.059 544 825
.062 577 .850
.065 613 875
.069 .654 .900
.073 .700 925
078 760 .950
.090 884 975
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pPi= .10 pPi= .20

Pij bij Pij
.020 —.000 .000
.021 010 .025
.023 .021 .050
.024 .032 .075
.025 .043 .100
.027 054 125
.028 .066 150
.029 078 175
.031 .090 .200
.032 .103 225
.034 116 250
.035 .129 275
.037 .143 300
.039 .156 325
.040 .170 350
.042 185 375
.044 .200 400
.046 215 425
.048 230 450
.049 246 475
.051 262 .500
.053 279 525
.055 296 550
.058 313 575
.060 331 .600
.062 .349 .625
.064 368 .650
.067 388 .675
.069 408 .700
.071 428 725
.074 450 750
077 472 75
.079 495 .800
.082 S18 .825
.085 543 .850
.088 .568 875
.091 593 900
.094 617 925
.096 .636 950
.093 .608 975
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pPi= .10 b= .30

bij Pij
.030 —-.000 .000
.032 011 .025
.033 .022 .050
.035 .034 .075
.036 .046 .100
.038 .058 125
.040 .070 .150
.041 .082 175
.043 .094 .200
.045 107 225
.046 120 250
.048 133 275
.050 .146 .300
.052 .159 325
.054 172 .350
.056 186 375
.057 .200 400
.059 214 425
.061 228 450
.063 242 475
.065 257 .500
067 271 525
.069 286 .550
071 301 575
.073 316 .600
.076 331 .625
078 347 .650
.080 362 675
.082 378 .700
.084 393 725
.086 409 750
.088 424 175
.090 438 .800
.092 454 825
.094 468 .850
.096 481 875
.098 491 .900
.098 497 925
.097 491 .950
.092 453 975
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pPi= .10 b= 40

Pij by Pij
.040 —-.000 .000
.042 011 .025
.043 .023 .050
.045 .035 .075
.047 .047 .100
.049 .059 125
.050 071 .150
.052 .083 175
.054 .095 .200
.056 107 225
.058 .119 250
.059 131 275
.061 .144 .300
.063 156 325
.065 .168 350
.067 181 375
.068 .193 400
.070 206 425
072 218 450
074 231 475
.076 243 .500
078 256 525
.079 268 575
.081 280 .600
.083 292 .625
.085 304 .650
.086 316 .675
.088 328 .700
.090 339 725
.091 350 750
.093 361 775
.094 371 725
.096 380 .800
.097 388 825
.098 395 .850
.099 401 875
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pPi= .10 b= .50

Pij by Pij
.050 —-.000 .000
.052 012 .025
.053 .023 .050
.055 .035 .075
.057 .046 .100
.059 .058 125
.060 .070 .150
.062 .081 175
.064 .093 .200
.066 .104 225
.067 116 250
.069 127 275
.071 138 .300
072 .149 325
.074 .161 .350
.076 172 375
077 183 400
.079 .193 425
.081 204 450
.082 215 475
.084 225 .500
.085 235 525
.087 245 .550
.088 255 575
.090 264 .600
.091 273 .625
.092 282 .650
.093 .290 675
.095 298 .700
.096 305 725
.097 312 750
.098 317 175
.098 323 .800
.099 327 825
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pPi= .10 b= .60

Pij by Pij
.060 —-.000 .000
.062 011 .025
.063 .023 .050
.065 .034 .075
.067 .045 .100
.068 .056 125
.070 067 .150
071 078 175
.073 .089 .200
.075 .099 225
.076 110 250
078 120 275
.079 130 .300
.081 .140 325
.082 .149 350
.083 .159 375
.085 .168 400
.086 177 425
.087 .186 450
.089 .194 475
.090 .203 .500
.091 211 525
.092 218 .550
.093 225 575
.094 232 .600
.095 .239 .625
.096 245 .650
.097 250 675
.097 255 .700
.098 .259 725
.099 263 .750
.099 267 775
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pPi= .10 b= .70

Pij by Pij
.070 —-.000 .000
071 011 .025
.073 .022 .050
.074 .032 .075
.076 .043 .100
077 .053 125
.079 .063 .150
.080 073 175
.081 .082 .200
.083 .092 225
.084 .101 250
.085 .109 275
.086 118 .300
.087 126 325
.088 134 .350
.090 142 375
.091 .150 400
.092 157 425
.093 .164 450
.093 .170 475
.094 176 .500
.095 182 525
.096 188 .550
.096 .193 575
.097 .197 .600
.098 201 .625
.098 205 .650
.099 208 675
.099 211 .700
.099 213 725
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pPi= 10 b= .80

Pij bij Pii
.080 —-.000 .000
.081 .010 .025
.082 .020 .050
.084 .029 .075
.085 .038 .100
.086 .047 125
.087 .056 .150
.088 .065 175
.089 .073 .200
.090 .080 225
.091 .088 250
.091 .095 275
.092 .102 .300
.093 .108 325
.094 115 350
.094 121 375
.095 126 400
.096 131 425
.096 136 450
.097 141 475
.097 .145 .500
.098 148 525
.098 152 .550
.099 155 575
.099 157 .600
.099 .160 .625
.099 .161 .650
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pPi= .10 b= .90

Pij by Pij
.090 —-.000 .000
.091 .008 .025
.091 016 .050
.092 .024 .075
.093 .031 .100
.093 .038 125
.094 .045 .150
.095 .051 175
.095 057 .200
.096 063 225
.096 .068 250
.097 073 275
.097 078 .300
.097 .082 325
.098 .086 .350
.098 .090 375
.098 .093 400
.099 .096 425
.099 .098 450
.099 .101 475
.099 .102 .500
.099 104 525
.099 .105 .550
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pPi= 20 b= 20

Pij bij Pii
.040 —-.000 .000
.042 012 .025
.044 .025 .050
.046 .038 .075
.048 .051 .100
.050 064 125
.052 077 .150
.055 .091 175
.057 .105 .200
.059 119 225
.061 133 250
.064 .148 275
.066 .163 .300
.069 178 325
.071 .194 350
.074 210 375
.076 226 400
.079 242 425
.081 259 450
.084 277 475
.087 294 .500
.090 312 525
.093 331 .550
.096 350 575
.099 370 .600
102 390 .625
.106 411 .650
.109 433 675
113 455 .700
117 479 725
121 .503 .750
125 .529 75
.129 .556 .800
134 585 825
.139 .616 .850
.144 .650 875
.150 .688 .900
157 734 925
.168 .800 .950
.197 982 975
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pPi= 20 b= .30

Pij bij Pij
.060 —-.000 .000
.062 .013 .025
.065 .027 .050
.067 .040 .075
.070 054 .100
072 .068 125
.075 .082 .150
078 .096 175
.080 d11 .200
.083 126 225
.086 .140 250
.088 155 275
.091 171 .300
.094 186 325
.097 202 .350
.100 218 375
.103 234 400
.106 250 425
.109 267 450
d12 284 475
115 301 .500
d18 319 525
122 337 .550
125 355 575
.129 374 .600
132 393 .625
.136 413 .650
139 433 675
.143 454 .700
.147 476 725
151 498 750
156 521 175
.160 .545 .800
.165 570 825
.169 .597 .850
174 625 875
.180 .654 .900
.186 .686 925
.192 719 .950
.191 17 975
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pPi= .20 b= 40

Pij by Pij
.080 —-.000 .000
.083 014 .025
.085 .028 .050
.088 .042 .075
.091 .056 .100
.094 .070 125
.096 084 .150
.099 .098 175
.102 113 .200
.105 127 225
.108 .142 250
d11 157 275
114 172 .300
d17 187 325
.120 202 350
123 217 375
.126 232 400
129 248 425
132 264 450
135 279 475
138 .296 .500
141 312 525
.144 328 .550
148 345 575
151 362 .600
154 379 .625
158 .396 .650
161 414 675
.165 431 .700
168 449 725
172 467 .750
175 486 75
.179 504 .800
182 523 825
.186 541 .850
.189 558 875
.192 573 .900
.194 581 925
.191 .568 .950
173 475 975

-BI2 -



pPi= .20 b= .50

Pij by Pij
.100 —-.000 .000
.103 014 .025
.106 .028 .050
.108 .042 .075
d11 .056 .100
114 .070 125
117 084 .150
120 .098 175
122 112 .200
125 126 225
128 .140 250
131 154 275
.134 .168 .300
136 182 325
.139 .196 .350
142 210 375
.145 225 400
.148 .239 425
151 253 450
153 287 475
.156 282 .500
159 296 525
.162 310 .550
.165 325 575
.168 339 .600
A71 353 .625
174 368 .650
176 382 675
.179 .396 .700
182 410 725
185 423 750
187 436 175
.190 449 .800
.192 461 825
.194 471 .850
.196 480 875
.197 484 .900
.196 479 925
.191 454 .950
177 387 975
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pPi= .20 b= .60

Pij by Pij
.120 —-.000 .000
123 014 .025
125 .027 .050
128 .041 .075
131 054 .100
133 .068 125
.136 .081 .150
139 .095 175
141 .108 .200
.144 121 225
.146 134 250
.149 147 275
151 .160 .300
154 173 325
.156 .186 350
159 .199 375
.161 212 400
.164 224 425
.166 237 450
.169 .249 475
171 261 .500
174 273 525
.176 285 .550
178 297 575
.180 .309 .600
183 320 .625
185 331 .650
187 341 675
.189 352 .700
191 361 725
.193 371 .750
.194 379 75
.196 387 .800
.197 394 825
.198 400 .850
.199 404 875
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pPi= .20 b= .70

Pij by Pij
.140 —-.000 .000
142 .013 .025
.145 .026 .050
.147 .039 .075
.149 .052 .100
152 064 125
.154 077 .150
156 .089 175
.159 .101 .200
161 113 225
.163 125 250
.165 137 275
.167 .148 .300
.169 .160 325
171 171 .350
173 182 375
175 .193 400
177 203 425
.179 214 450
181 224 475
.183 234 .500
.185 243 525
.186 253 .550
.188 262 575
.190 270 .600
191 278 .625
.192 286 .650
.194 294 675
.195 .300 .700
.196 307 725
.197 312 750
.198 318 175
.199 323 .800
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pPi= .20 b= .80

Pij by Pij
.160 —-.000 .000
.162 012 .025
.164 .024 .050
.166 .036 .075
.168 .047 .100
.169 .058 125
171 .069 .150
173 .080 175
175 .091 .200
175 .101 225
.176 d11 250
179 121 275
181 131 .300
182 .140 325
.184 .149 350
.185 158 375
187 167 400
.188 175 425
.189 .183 450
.190 .190 475
.192 .197 .500
.193 204 525
.194 211 .550
.195 217 575
.196 223 .600
.196 228 .625
.197 233 .650
198 237 675
.199 241 .700
.199 245 725
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pPi= 20 b= .90

Pij bij Pij
.180 —-.000 .000
181 .010 .025
.182 .020 .050
.184 .030 .075
.185 .039 .100
.186 .048 125
187 057 .150
.188 .065 175
.189 .073 .200
.190 .081 225
.191 .088 250
191 .096 275
.192 .103 .300
.193 .109 325
.194 115 .350
.195 121 375
.195 127 400
.196 132 425
.196 137 450
197 141 475
.197 .146 .500
.198 .149 525
.198 153 .550
.199 156 575
.199 158 .600
.199 .161 .625
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pPi= .30 b= .30

Pij by Pij
.090 —-.000 .000
.093 014 .025
.096 .029 .050
.099 .044 .075
.102 .058 .100
.105 073 125
.109 .088 .150
d12 .103 175
115 .119 .200
d18 134 225
A21 .150 250
125 165 275
128 181 .300
131 198 325
135 214 350
138 231 375
142 247 400
146 265 425
.149 282 450
153 .300 475
157 318 .500
161 336 525
.165 355 .550
.169 374 575
173 394 .600
177 414 .625
181 435 .650
.186 456 675
.190 478 .700
.195 501 725
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pPi= .30 b= 40

Pij by Pij
.120 —-.000 .000
123 015 .025
127 .030 .050
.130 .045 .075
134 .060 .100
137 075 125
.140 .091 .150
.144 .106 175
.147 122 .200
151 137 225
.154 153 250
158 .169 275
.162 185 .300
.165 201 325
.169 217 .350
173 234 375
.176 251 400
.180 268 425
.184 285 450
.188 302 475
.192 320 .500
.196 338 525
.200 356 .550
204 375 575
208 394 .600
213 413 .625
217 433 .650
222 454 675
227 475 .700
231 496 725
236 519 750
242 542 175
247 .566 .800
253 592 825
.259 .619 .850
.265 .647 875
272 679 .900
281 716 925
291 764 .950
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pPi= .30 b= .50

Pij by Pij
.150 —-.000 .000
.153 015 .025
157 .030 .050
.160 .045 .075
.164 .060 .100
.167 076 125
A71 .091 .150
174 .106 175
178 121 .200
181 137 225
.185 152 250
.188 .168 275
.192 183 .300
.196 .199 325
.199 215 350
.203 231 375
.207 247 400
210 263 425
214 279 450
218 296 475
222 312 .500
225 329 525
.229 346 .550
233 363 575
237 381 .600
241 398 .625
245 416 .650
.249 434 675
254 453 .700
258 471 725
.262 490 750
267 .509 75
271 .529 .800
276 548 825
.280 .568 .850
284 586 875
288 .603 .900
.290 611 925
285 .590 .950
252 445 975
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pPi= .30 b= .60

Pij by Pij
.180 —-.000 .000
.183 015 .025
187 .030 .050
.190 .044 .075
.193 .059 .100
.197 074 125
.200 .089 .150
203 .104 175
.207 118 .200
210 133 225
213 148 250
216 .163 275
220 177 300
223 192 325
226 207 350
230 222 375
233 236 400
236 251 425
.240 266 450
243 281 475
.246 .296 .500
.250 311 525
253 326 .550
257 341 575
.260 356 .600
.263 371 .625
267 386 .650
.270 401 675
273 416 .700
277 430 725
.280 445 750
283 459 175
.286 473 .800
.289 485 825
291 496 .850
.293 504 875
.293 505 .900
.290 491 925
278 438 .950
246 294 975
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pPi= .30 b= .70

Pij by Pij
210 —-.000 .000
213 014 .025
216 .028 .050
219 .043 .075
222 .057 .100
225 071 125
228 084 .150
231 .098 175
234 112 .200
236 126 225
239 .139 250
242 153 275
245 .166 .300
248 .180 325
251 .193 350
253 206 375
256 219 400
.259 232 425
262 245 450
264 258 475
267 271 .500
.270 283 525
272 .296 .550
275 308 575
277 320 .600
.280 332 .625
282 344 .650
285 355 675
287 .366 .700
.289 376 725
291 386 750
.293 395 75
.295 404 .800
.296 411 825
297 416 .850
298 418 875
.297 414 .900
.294 401 925
288 372 .950
285 355 975
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pPi= .30 b= .80

Pij by Pij
.240 —-.000 .000
242 .013 .025
245 .026 .050
247 .039 .075
.249 .052 .100
252 .064 125
254 077 .150
256 .089 175
259 .101 .200
.261 113 225
.263 125 250
.265 137 275
267 .149 300
.269 .160 325
271 171 350
273 182 375
275 .193 400
277 204 425
279 214 450
281 224 475
283 234 .500
285 244 525
.286 253 .550
288 262 575
.290 271 .600
291 279 .625
.293 287 .650
294 295 675
.293 302 .700
297 308 725
.298 315 750
.299 320 75
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pPi= .30 b= .90

Pij by Pij
270 —-.000 .000
272 011 .025
273 .022 .050
274 .033 .075
276 .043 .100
277 .053 125
279 .063 .150
280 .073 175
281 .083 .200
283 .092 225
284 .101 250
285 110 275
286 .119 .300
288 127 325
.289 136 350
.290 .143 375
291 151 400
292 158 425
.293 165 450
294 172 475
.295 178 .500
.295 184 525
.296 .190 .550
.297 195 575
.298 .200 .600
298 205 .625
.299 .209 .650
.299 213 675
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pPi= 40 b= 40

Pij by Pij
.160 —-.000 .000
.164 015 .025
167 .031 .050
171 .047 .075
175 .062 .100
.179 .078 125
183 .094 .150
.186 110 175
.190 126 .200
.194 142 225
.198 158 250
202 174 275
.206 191 300
210 207 325
214 224 350
218 241 375
222 258 400
226 276 425
230 293 450
235 311 475
.239 329 .500
243 348 525
248 367 .550
253 386 575
257 406 .600
262 426 .625
267 446 .650
272 468 675
278 490 .700
283 512 725
.289 .536 750
.295 561 75
301 587 .800
308 615 825
315 .645 .850
323 678 875
333 719 .900
346 776 925
373 .886 .950
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pPi= 40 b= .50

Pij by Pij
.200 —-.000 .000
204 016 .025
208 .031 .050
212 .047 .075
215 .063 .100
219 .079 125
223 .095 .150
227 110 175
231 126 .200
235 142 225
239 .159 250
243 175 275
247 191 300
251 208 325
255 224 350
.259 241 375
.263 258 400
267 275 425
272 293 450
276 310 475
.280 328 .500
285 346 525
.289 365 .550
294 383 575
.299 402 .600
.303 422 .625
308 442 .650
313 462 675
318 483 .700
324 505 725
.329 527 750
335 551 175
341 575 .800
347 .600 825
354 .628 .850
361 .658 875
370 .692 .900
380 736 925
.397 .803 .950

—B26 -



pPi= 40 b= .60

Pij by Pij
.240 —-.000 .000
244 015 .025
247 .031 .050
251 .046 .075
255 .062 .100
.259 077 125
262 .093 .150
.266 .108 175
270 124 .200
274 .140 225
277 155 250
281 171 275
285 187 300
.289 .203 325
.293 219 350
.296 235 375
.300 251 400
304 267 425
308 284 450
312 .300 475
316 317 .500
320 334 525
324 351 .550
328 368 575
333 386 .600
337 404 .625
341 422 .650
346 440 675
.350 459 .700
355 477 725
.359 496 750
364 516 75
.368 535 .800
373 555 825
378 574 .850
382 593 875
.386 .608 .900
387 612 925
378 573 .950
326 359 975

- B27 -



pPi= 40 b= .70

Pij by Pij
.280 —-.000 .000
283 015 .025
287 .030 .050
.290 .044 .075
.293 .059 .100
297 074 125
.300 .089 .150
303 .104 175
.307 118 .200
310 133 225
313 148 250
316 .163 275
.320 177 300
323 .192 325
326 207 350
330 222 375
333 236 400
336 251 425
.340 266 450
376 281 475
.346 .296 .500
350 311 525
353 326 .550
357 341 575
.360 356 .600
363 371 .625
367 386 .650
370 401 675
373 416 .700
377 430 725
.380 445 750
383 459 175
.386 472 .800
389 483 825
391 493 .850
391 497 875
.390 489 .900
382 456 925
361 361 .950
307 122 975

- B28 -



pPi= 40 b= .80

Pij by Pij
.320 —-.000 .000
323 .013 .025
325 .027 .050
328 .041 .075
331 054 .100
333 .068 125
336 .081 .150
.339 .095 175
341 .108 .200
344 121 225
.346 134 250
.349 147 275
351 .161 300
354 173 325
357 186 350
.359 .199 375
362 212 400
.364 225 425
.366 237 450
369 .249 475
371 262 .500
374 274 525
.376 286 .550
378 298 575
381 .309 .600
383 321 .625
385 332 .650
387 342 675
.389 353 .700
391 363 725
.393 372 750
.395 380 75
.396 387 .800
397 393 825
.397 395 .850
.397 392 875
.394 379 .900
389 350 925
.379 300 .950
374 274 975

- B29 -



pPi= 40 b= .90

Pij by Pij
.360 .000 .000
362 012 .025
.363 .023 .050
365 .034 .075
367 .046 .100
368 057 125
.370 .068 .150
372 .079 175
373 .089 .200
375 .100 225
376 .110 250
378 21 275
379 131 300
381 141 325
382 151 350
384 .160 375
.385 .170 400
.386 179 425
388 188 450
389 .197 475
.390 205 .500
391 213 525
.393 221 .550
394 229 575
.395 236 .600
396 243 .625
.397 250 .650
398 256 675
.399 263 .700

- B30 -



pPi= .50 b= .50

Pij by Pij
.250 —-.000 .000
254 016 .025
258 .032 .050
262 .048 .075
266 064 .100
270 .080 125
274 .096 .150
278 12 175
282 128 .200
.286 .144 225
.290 .161 250
.294 177 275
298 .194 300
303 210 325
.307 227 350
311 244 375
315 262 400
320 279 425
324 297 450
329 315 475
333 333 .500
338 352 525
.343 370 .550
347 .390 575
352 409 .600
357 429 .625
363 450 .650
368 471 675
373 493 .700
379 516 725
385 .539 750
391 564 75
.398 .590 .800
405 618 825
412 .649 .850
421 .685 875
433 731 .900
451 804 925
490 961 .950

- B31 -



pPi= .50 b= .60

Pij by Pij
.300 —-.000 .000
304 016 .025
308 .031 .050
312 .047 .075
315 .063 .100
319 .079 125
323 .094 .150
327 110 175
331 126 .200
335 142 225
339 .159 250
343 175 275
.347 191 300
351 208 325
355 224 350
.359 241 375
.363 258 400
367 275 425
372 293 450
376 310 475
.380 328 .500
385 346 525
.389 364 .550
394 383 575
.399 402 .600
403 422 .625
408 442 .650
413 462 675
418 483 .700
424 505 725
429 527 750
435 551 175
441 575 .800
447 .601 825
454 .629 .850
462 .661 875
472 .700 .900
485 756 925

-B32 -



pPi= .50 b= .70

Pij by Pij
.350 —-.000 .000
353 015 .025
357 .030 .050
.360 .045 .075
364 .060 .100
367 076 125
371 .091 .150
374 .106 175
378 121 .200
381 137 225
385 152 250
388 .168 275
392 183 300
.396 .199 325
.399 215 350
403 231 375
407 247 400
410 263 425
414 279 450
418 296 475
422 312 .500
425 329 525
429 346 .550
433 363 575
437 380 .600
441 398 .625
445 416 .650
.449 434 675
454 452 .700
458 471 725
462 490 750
467 508 75
471 527 .800
475 546 825
479 564 .850
483 580 875
485 .590 .900
483 580 925
465 501 .950
389 171 975

- B33 -



pPi= .50 b= .80

Pij by Pij
.400 —-.000 .000
403 014 .025
406 .028 .050
408 .042 .075
411 .056 .100
414 .070 125
417 084 .150
420 .098 175
422 112 .200
425 126 225
428 .140 250
431 154 275
434 168 300
436 182 325
439 196 350
442 211 375
445 225 400
448 239 425
451 253 450
454 268 475
456 282 .500
459 296 525
462 311 .550
465 325 575
468 .340 .600
471 354 .625
474 368 .650
476 382 675
479 .396 .700
482 409 725
484 422 750
487 435 175
489 445 .800
491 453 825
491 456 .850
490 449 875
484 422 .900
470 .349 925
436 .180 .950
359 —-204 975

~B34-



pPi= .50 b= .90

Pij by Pij
450 .000 .000
452 012 .025
454 .024 .050
455 .035 .075
457 .047 .100
459 .059 125
461 .070 .150
462 .082 175
464 .093 .200
466 105 225
467 117 250
469 128 275
471 .139 300
473 151 325
474 162 350
476 173 375
478 184 400
479 .195 425
481 206 450
483 217 475
484 227 .500
486 238 525
487 248 .550
489 258 575
490 268 .600
492 278 .625
493 287 .650
494 296 675
.496 304 .700
497 312 725
498 320 750
499 326 75
.500 332 .800
.500 335 825
.500 336 .850
.500 331 875
498 320 .900
495 303 925
496 304 .950

- B35 -



pPi= .60 b= .60

Pij by Pij
.360 —-.000 .000
.364 015 .025
367 .031 .050
371 .047 .075
375 .062 .100
379 .078 125
382 .094 .150
.386 110 175
.390 126 .200
.394 142 225
398 158 250
402 174 275
406 191 300
410 207 325
414 224 350
418 241 375
422 258 400
426 276 425
430 293 450
435 311 475
439 329 .500
443 348 525
448 367 .550
453 386 575
457 405 .600
462 426 .625
467 446 .650
472 467 675
477 489 .700
493 512 725
489 .536 750
.495 561 175
.501 588 .800
508 617 825
516 .650 .850
526 .692 875
.540 750 .900
.565 853 925

—B36 -



pPi= .60 b= .70

Pij by Pij
420 —-.000 .000
423 015 .025
427 .030 .050
430 .045 .075
433 .060 .100
437 075 125
.440 .091 .150
444 .106 175
447 121 .200
451 137 225
454 153 250
458 .169 275
461 185 300
465 201 325
469 217 350
472 234 375
476 251 400
480 267 425
484 285 450
488 302 475
492 320 .500
496 338 525
.500 356 .550
504 375 575
.508 394 .600
S13 413 .625
517 433 .650
522 453 675
.526 474 .700
531 496 725
.536 S18 750
.542 542 75
.547 567 .800
.553 594 825
.560 .624 .850
568 .660 875
.579 708 .900
.596 782 925

- B37 -



pPi= .60 b= .80

Pij bij Pii
480 —-.000 .000
483 013 .025
485 .027 .050
488 .041 .075
491 .055 .100
494 .070 125
496 084 .150
499 .098 175
.502 113 .200
.505 127 225
508 142 250
S11 157 275
514 171 300
517 .186 325
.520 202 350
523 217 375
526 232 400
.529 248 425
532 264 450
535 280 475
.538 .296 .500
541 312 525
.544 328 .550
548 345 575
551 362 .600
554 379 .625
.558 .396 .650
561 413 675
.564 431 .700
568 448 725
571 466 750
575 483 175
578 .500 .800
581 516 825
.584 .529 .850
.585 535 875
.583 525 .900
572 469 925
.535 282 .950
429 -.262 975

—B38 -



pPi= .60 b= .90

Pij by Pij
.540 .000 .000
542 012 .025
.543 .023 .050
.545 .035 .075
547 .047 .100
.549 .059 125
.550 071 .150
.552 .083 175
554 .095 .200
.556 .108 225
558 .120 250
.559 132 275
561 145 300
.563 157 325
.565 .170 350
.567 182 375
.569 195 400
571 208 425
572 220 450
574 233 475
.576 246 .500
578 258 525
.580 271 .550
582 283 575
.583 .296 .600
.585 308 .625
.587 320 .650
.589 332 675
.590 343 .700
592 353 725
.593 362 750
.594 369 75
.595 373 .800
.592 370 825
.592 356 .850
587 320 875
.576 246 .900
555 .099 925
S15 -.171 .950
430 — 178 975

- B39 -



pPi= .70 b= .70

Pij by Pij
490 —-.000 .000
493 014 .025
496 .029 .050
499 .043 .075
502 .058 .100
.505 .073 125
508 .088 .150
512 .103 175
S15 118 .200
518 134 225
521 .149 250
525 .165 275
528 181 300
531 197 325
535 214 350
538 230 375
542 247 400
.545 264 425
.549 282 450
553 .299 475
557 317 .500
.560 336 525
.564 354 .550
568 374 575
573 393 .600
577 413 .625
.581 434 .650
.586 455 675
.590 478 .700
.595 501 725
.600 525 750
.606 551 175
612 .580 .800
.619 612 825
.627 .652 .850
.638 706 875
.656 793 .900
.691 .959 925

~B40 -



bi= .70 b= .80

Pij bij Pij
.560 —.001 .000
.562 .013 .025
.565 .026 .050
.567 .040 .075
570 054 .100
572 .068 125
575 .082 .150
578 .096 175
.580 11 .200
.583 125 225
.586 .140 250
.588 155 275
591 .170 300
.594 .186 325
.597 202 350
.600 217 375
.603 234 400
.606 250 425
.609 267 450
612 284 475
.615 301 .500
.618 318 525
.622 336 .550
.625 355 575
.628 373 .600
.632 393 .625
.636 412 .650
.639 432 675
.643 453 .700
.647 475 725
.651 497 750
.656 521 75
.660 547 .800
.666 576 825
.672 610 .850
.680 .653 875
.691 715 .900

~B41 -



pPi= .70 b= .90

Pij by Pij
.630 .000 .000
.632 011 .025
.633 .023 .050
.635 .034 .075
.636 .046 .100
.638 .058 125
.640 .070 .150
.641 .083 175
.643 .095 .200
.645 .108 225
.647 121 250
.648 134 275
.650 147 300
.652 .160 325
.654 174 350
.656 187 375
.658 201 400
.660 215 425
.662 230 450
.664 244 475
.666 259 .500
.668 273 525
.670 288 .550
.672 303 575
.674 318 .600
.676 333 .625
.678 .349 .650
.680 364 675
.682 378 .700
.684 393 725
.686 406 750
.687 417 175
.688 424 .800
.688 425 825
.687 411 .850
.681 371 875
.667 271 .900
.636 041 925

~B42 -



bi= .80 b= .80

Pij bij Pij
.640 —.001 .000
.642 012 .025
.644 .024 .050
.646 .037 .075
.648 .050 .100
.650 .063 125
.652 077 .150
.654 .091 175
.657 105 .200
.659 119 225
.661 133 250
.664 .148 275
.666 .163 300
.669 178 325
671 .194 350
.674 210 375
.676 226 400
.679 242 425
.681 .259 450
.684 276 475
.687 294 .500
.690 312 525
.693 331 .550
.696 350 575
.699 .369 .600
702 389 .625
.706 410 .650
.709 432 675
713 455 .700
17 479 725
721 .505 750
725 534 75
731 .568 .800
738 611 825
747 .669 .850
762 761 875
787 922 .900

~B43 -



pPi= .80 b= .90

Pij by Pij
.720 .000 .000
721 011 .025
723 .021 .050
724 .032 .075
725 .044 .100
727 .055 125
728 067 .150
.729 .079 175
731 .091 .200
732 .104 225
734 117 250
736 130 275
737 .144 300
.739 158 325
741 172 350
742 .186 375
744 201 400
746 216 425
748 232 450
.750 247 475
752 264 .500
754 280 525
756 297 .550
758 314 575
.760 332 .600
762 350 .625
764 .369 .650
767 388 675
.769 408 .700
771 429 725
774 451 750
77 474 175
780 .499 .800
783 527 825
787 .560 .850
792 .599 875
797 .643 .900
801 675 925
.792 .603 .950
.692 —231 975

—B44 -



pPi= .90 b= .90

Pij by Pij
810 .002 .000
811 011 .025
812 .020 .050
813 .030 .075
814 .040 .100
814 .050 125
815 .060 .150
.816 071 175
817 .083 .200
.819 .094 225
.820 .107 250
821 .119 275
822 132 300
.823 .145 325
.824 .159 350
.826 174 375
827 188 400
.828 .203 425
.830 219 450
831 235 475
.833 252 .500
834 .269 525
.836 287 .550
838 306 575
.839 325 .600
841 346 .625
.843 368 .650
.845 391 675
.848 417 .700
850 447 725
.853 482 750
858 528 75
.863 .590 .800
72 .683 825
.885 .833 .850

~B45 -



