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I.  Basic Background Rationale 

The parameter estimation procedures of the taxometric theories are complemented 

by consistency tests which describe how well the theory fits the data. The major purposes 

of consistency tests are to avoid spurious taxometric findings (e.g., the method indicates 

there is a taxon when, if fact, there is nothing of the sort) and to detect when parameter 

estimates are too erroneous for the particular purposes of the study. Consistency testing in 

application of a mathematical theory is just as obviously required and is just as much a 

matter of simple common sense, as in other endeavors. For example, the builders of the 

MMPI realized that validity keys were required. However, while anyone would know that 

some people randomly respond and lie and so on when taking the MMPI, it is curious that 

few psychologists or sociologists act as if Nature could, on occasion, be more devious 

than mathematicians require. 

In general, any taxometric theory can be thought of as a set of equations relating a 

set of latent parameters to a set of manifest parameters. Some of these equations may 

involve only latent parameters and others involve only manifest parameters. Most 

equations of most immediate concern in the development of a theory involve both kinds of 

parameters. 

There are two special types of equations: (A) the assumptions and (B) the derived 

equations which express the latent parameters as explicit functions of the manifest 

parameters. Traditionally, the psychometrician usually is satisfied with just the 

development of B from A. while such a feat may require a high degree of mathematical 



 

 

 – 2 – 

competence and creativity and can be regarded as the solutions of the most immediate 

importance, there remains further mathematical derivation to prepare the theory for 

application to substantive problems. Such derivation can be roughly described to be that of 

deriving all further relations between the parameters that one is able to. These latter 

equations can be used for determining how well the theory fits the data of the real 

phenomena, hence are called the (C) consistency equations. If the assumptions A are 

roughly correct and the estimates of the manifest parameters (obtained from the data, of 

course) and of the latent parameters (by the calculations given by B) are roughly correct, 

then substitution of the parameter estimates into C will show that they roughly satisfy each 

equation of type C. 

There are at least four sources of error which cause the consistency equations to be 

only approximately satisfied. First, the assumptions A are always mathematical 

idealizations and never strictly true for real phenomena, and therefore it is clear that the 

estimates resulting from B will contain such error. Second, the manifest parameters 

contain sampling error (between individuals) and measurement error (within individuals); 

hence, the latent parameter estimates contain sampling and measurement error (since they 

are functions of the manifest parameters as given by B). Third, the calculation method 

used in B can be one that according to the underlying mathematical theory gives at best an 

approximate solution to the equations resulting from A. 

Theoretically, sampling error, measurement error and solution error can be assessed 

rather directly and can be reduce to (nearly) any arbitrarily small size. To reduce  
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(a) sampling error, one can increase the sample size, (b) measurement error, one can resort 

to reliability theory, factor analysis, and item selection methods or (c) solution error, one 

can, for example, continue an iterative calculation procedure until convergence conditions 

are adequately satisfied. However, "assumption error" does not seem to be of this same 

sort in that its size cannot be directly assessed (an assumption as opposed to a hypothesis 

is by definition not directly testable) and it is not reducible to (nearly) any arbitrarily small 

size by a systematic procedure. Naturally there is no corresponding theory of 

verisimilitude to numerically assess assumption error. 

Suppose that only assumption error is a matter of concern; that is, all other sources 

of error have been eliminated. Presumably continual revision of the theory so that the 

parameter estimates of B become closer to perfect solutions of C would increase the 

verisimilitude of the theory assuming that the consistency equations are chosen correctly 

so as to provide sufficient testing of the fit of the theory to the data. The consistency 

testing development might then attempt to meet criteria such as the following: 

(a)  there is one for as many subsets of the assumptions as possible, 

(b)  they are not redundant in that they are derivable from B; even the addition of weak 

assumptions to B should not allow the derivability of C, 

(c)  they follow as directly from A as does B and, in fact, might be partially 

interchangeable with B, 

(d)  they are adequately sensitive to assumption errors that are most probable,  
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(e)  they are adequately sensitive to assumption errors that are most troublesome in 

that they cause intolerable errors in important parameter estimates, 

(f)  they provide clues as to how the theory might be revised to obtain a better fit (by 

pointing out the set of disparate assumptions with the aid of criterion (a)), and 

(g)  they indicate when the theory is totally off the mark and should not be used at all. 

With the current state of the art of mathematical theory building in the area of 

psychopathology measurement it would be a major contribution to meet even the last of 

these criteria. 

Unfortunately, formal mathematical analysis in the way of determining whether or 

not consistency tests satisfy the above criteria for a complicated taxometric theory is 

always terribly difficult and usually impossible in a practical sense. Fortunately, however, 

the Monte Carlo method can be used to perform an approximative analysis which is good 

enough for nearly all purposes. In this method, unknown mathematical functions are 

approximately described by observing the behavior of the dependent variables resulting 

from systematic variation in the independent variables. Most of the above criteria for 

evaluating consistency tests can be given in terms of properties of various mathematical 

functions. Even though these functions are terribly complicated when given explicitly or 

implicitly, they can be easily studied for our purposes by the Monte Carlo method. 
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II. General Design of the Monte Carlo Experiment 

The basic idea of the design proposed here is very simple. Suppose θi are the 

(population) parameters of a particular taxonomic structure. Suppose further, that we are 

able to construct an artificial data (variable ‚ subject) matrix which can be regarded as a 

sample from some specified population given in terms of θi’s. We can then analyze the 

artificial data by the taxometric method and observe the errors (εi)1 of the parameter  

estimates (θ ) and the degree of approximations (i
ˆ

j∆ ) obtained in the consistency 

equations. It will be noted that for the taxometric theory to work correctly it is necessary 

that: 

(a)  the εi's and the 's be sufficiently small (the εi's are set in accordance with the 

substantive problem estimation accuracy requirements and the  by a method 

given below) or 

j∆

j∆

(b)  if not, one or more of the j∆ 's exceed critical values cj (one or more consistency 

tests are failed). 

The critical values (cj) are usually determined analytically in the following manner. The 

consistency equation can usually be written in the form 

Fj (θ1, θ2, … θn) = 0. 

Then the exact differential is given by 

j
j i

i i

F
dF dθ

p
∂

=
∂∑ ; 

                                                 
1 Let ai denote an arbitrary but fixed vector element, then the notation (ai) will be used to denote 
the vector (a1, a2, a3, … an). 
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hence if we define  by j∆

j∆  = j
i

i i

F
ε

p
∆

∆∑  

we can determine what  will be for small θi errors εi for any given value of θi. Usually it 

is sufficient to choose for the cut-value cj an upper bound for the 

j∆

j∆  values which result 

from considering maximally tolerable values for the ∆θi and a sufficiently wide variety of 

θi values; this procedure normally can be handled analytically but the Monte Carlo method 

can be resorted to if necessary. 

To study sampling error for a particular value of θi a number of independent data 

samples are generated and analyzed and appropriate εi  ‚ j∆  scatter plots are studied to 

see if conditions (a) and (b), given above, are met. 

One is not interested in one value of θi but in all values which are at least remotely 

possible. The sample size is made sufficiently large so that it need not be a matter of 

concern. Here each point of a εi  ‚ j∆  scatter plot represents a value of θi. The problem 

then is to select a finite and reasonably small set of θi values which give a sufficiently 

accurate picture of the εi  ‚  relationship for all reasonably likely taxonomic situations 

(or θi values). There is no firm analytical procedure offered here for adequately sampling 

taxonomic situations but as will be discussed below, the method does not ultimately rely 

on an exhaustive sampling. 

j∆

It was implied above that the εi  ‚ j∆  relationship be viewed in terms of a four-fold 

table. However, to the extent that one's substantive theory testing is a matter of 

determining the degree of fit within the context of discovery rather than making  
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a dichotomous decision (accept, reject) it would be better to record the entire εi  ‚ j∆  

scatter plot or summary statistics of it. 

 Each sample of a taxonomic situation selected produces a value of εi and a value of 

. An interesting possibility for determining major causes of error in a taxometric 

method consists of factor analysis of εi and 

j∆

j∆  variables, the εi variables alone and the j∆  

variables alone. In this instance we will know if the factors are real, interpretable, and 

useful for if they are they will lead to new insights about the method. 

 

III.  The Requirement of the Random Number Generator Method 

It remains to determine how the artificial data are to be generated. In this section are 

discussed the various primary considerations which lead to the development of the 

proposed generating method. 

The various latent taxonomic detection methods developed so far use either scales 

(for example, see Golden et al., 1974b) or dichotomous items (for example, see Golden et 

al., 1974c) as indicators. In practice, usually the scales will simply be sums of 

dichotomous items such as those of the MMPI (called keys herein). The methods usually 

rest on an assumption which requires that correlations between the indicators be zero 

within each taxonic class. In the case of keys this condition is met if the items of one key 

are each independent of those of another. The normal theory (Golden et al., 1974b) — 

both the maximum likelihood and minimal chi-square solutions — requires that the 

within-taxonomic class distributions be normal; this condition also is obtained when the  
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items of the key are independent within taxonomic class. In general, all of the major 

assumptions of any of these theories are derivable from the grand assumption that the 

within-taxonomic class item correlations are all perfectly zero. 

In reality, items are never perfectly independent within taxonomic class, of course, 

and it is necessary to know how robust a method is with respect to this assumption. That 

is, it is desirable to know how highly and in what ways or patterns items can be correlated 

within taxonomic class without seriously affecting the method's estimates of the latent 

parameters describing the taxonomic situation. 

The problem then is to generate artificial data that simulate real Bernoulli variables 

with specified degrees and patterns of dependency. Since the assumptions of the various 

taxometric theories can all be given in terms of phi-correlations between items within 

taxonomic class, it should be simple to specify these. Thus, the simple-to-use method 

proposed here requires only the specification of the single parameter for each Bernoulli 

variable (the mean or proportion) and the correlation matrix for the set of Bernoulli 

variables. 

 

IV.  Analytical Development of a Random Number Generator Method 

Suppose that z  are n Bernoulli random variables which have the value 1 with 

probability pl
2 and the value 0 with probability 1 – pi, i = 1, 2, 3, …, n. Let the joint 

proportion matrix be denoted by

i

 
2 In this development all constants are population parameters. 
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1

21 2

31 32 3
n×n

n1 n2 n

p
p p

p p p p

p p p

 
 
 
 =
 
 
  

 

the phi-correlation coefficient matrix by 
n×n
φ  = ijφ , where  

( ) ( )
ij i j

ij

i i j

p p p

p 1 p p 1 p
φ

j

−
=

− −
 

 and the vector of variable parameters 
1 n
p
×

= (p1, p2, …, pn). The problem, then, is to 

generate numbers simulating Bernoulli variables with given 
1 n
φ
×

 and  matrices, or, 

equivantly, with a given matrix. 

1 n
p
×

n n
p
×

Let  ( i = 1, 2, 3, …, n) be n standardized normal random variables (with mean 

equal to zero and unit variance) with intercorrelations ρij (where i,j = 1, 2, 3, …, n). Then 

we construct n Bernoulli variables  by 

ix

iz

 
( )
( )

i
i

i i

1 if F x p
z

0 if F x > p
i≤= 


 (1) 

where 

( )
2

ix t
2

i
1F x e dt
2π

−

−∞
= ∫  . 
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It follows that 

( ) ( )ij i j i jρ E z z Pr z 1and z 1= = = =  

 ( ) ( )( )i i jPr F x p and F x p= ≤ j≤  

 
( ) ( ) ( )i jp p 2 2

ij1
2 2 ijij

1 1exp x 2ρ xy y dxdy
2 1 ρ2π 1 ρ −∞ −∞

 = − −
− −  

∫ ∫
+ 

}

 (2) 

which is the bivariate normal density function for two standard variables (p. 33, Kendall 

1952). 

Since 

 ( ) ( ) ( ){
1

2
i j ij ij i i j j iE z z p p 1 p p 1 p p pφ= = − − + j , (3) 

it follows that given 9ij, pi and pj, which are the parameters we wish to specify, then pij can 

be determined by (3) and, next, ρij is determined by solution of (2) for ρij. Suppose it were 

possible to solve (2) explicitly for ρij such that 

ρij = F(9ij, pi, pj), 

then given 9ij and (p1, p2, …, pn) one could determine ρij. Leaving this matter of 

determining ρij for the moment, we observe that since the  are distributed multivariate 

normally they can be generated by a method such as the one presented below. The 

cumulative density for each value of each  is then determined and is compared with pi 

according to (1) to determine the value of the Bernoulli variable . This completes the 

process of generating the  values for specified 

ix

ix

iz

iz
n n
φ
×

 and 
1 n
p
×

 matrices. 

It remains, first, to describe a method for simulation of a multivariate normal 

distribution given the correlation matrix and the variable means and variances. 
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Let = (x1, x2, … xn) be an n-tuple random vector such that each  is a standardized 

random variable (with zero mean and unit variance) and let the covariance between  and 

 be σij for each i,j pair and define 

n 1
x
× ix

ix

jx

12 1n

21

n n

n1

1 σ σ
σ

σ 1
×

 
 
 =
 
 
  

∑  

as the given covariance matrix. Let 
n 1
y
×

 be a set of such variates such that the covariance 

matrix is I, the identity matrix. Suppose that there exists a matrix 
n n
T
×

, for a given Σ, such 

that  = · . Thus 
n 1
x
× n n

T
× 1 n

y
×

( ) ( ) ( ){ }n n n 1 1 n
E x x E T y Ty

× × ×

′′Σ = ⋅ = ⋅ ⋅  

= E(Ty · y′T) = TE(yy′)T′ ; 

since E(yy′) = I, we have 
n n n n n n

T T
× × ×

′Σ = ⋅  

and it is seen that T is the matrix such that the product of it and its transpose is the given 

Σ. When an unique solution for T exists it can be found by a method given by Anderson 

(1957). The yi can be simulated by use of any of several well-known methods for 

univariate normal variables. 

 Finally, it remains to determine ρij since it is not easily found as an explicit function 

of 9ij, pi and pj. The function is adequately approximated by tables of corresponding 

values of pij, 9ij and ρij (given in Appendix B). These tables were constructed by 

specifying values of pi, pj and ρij and determining pij and 9ij from (2) and (3).  
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The parameters pi and pj were allowed to vary from 0.1 to 0.9 in increments of 0.1 and pij 

from 0 to min(pi, pj) in increments of 0.025. The integration in (2) was performed by a 

numerical method (see pp. 887 and 916 of Abramowitz and Stegan, 1964). 

This completes the development of the method. The basic idea is simply to use the 

multivariate normal distribution, dichotomize by cutting deviates corresponding to 

cummulative densities pi and to preadjust the ρij values for the resulting shrinkage caused 

by dichotomization. 

In order to use the generator it is necessary to specify 9ij and 
1 n
p
×

 then use the table to 

determine ρij which is required input for the subroutine (described in Appendix A). It 

should be noted that not all values for 9ij and 
1 n
p
×

 are acceptable. A straightforward 

procedure is to pick the pi values first, then pick 9ij values such that 

pipj  ≤  pij  ≤  min(pi, pj) 

or 

( )
( ) ( )

ij j i j
ij

i i j

min p p p p
0

p 1 p p 1 p
φ

−
≤ ≤

− − j

. 

It can also be shown from a result given by McNemar (p. 166, 1962) that it is required that 

for each i,j pair 

2 2 2 2
ik jk ik jk ik jk ik jk1 1 1 1φ φ φ φ φ φ φ φ− − − < − − +  

for all k (k ≠ i ≠ j). Although the above two conditions are necessary ones, it has not been 

shown that they are sufficient.  
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Example 

Suppose we wish to generate numbers for five Bernoulli variables with the following 

parameter values: 

pi = (.320, .780, .880, .100, .510) 
and 

 1.00     

 0.32 1.00    

9ij = 0.31 0.37 1.00   

 0.29 0.15 0.12 1.00  

 0.34 0.09 0.26 0.06 1.00 

From appendix B we find that 

 1.00     

 0.68 1.00    

ρij = 0.87 0.64 1.00   

 0.57 0.49 0.65 1.00  

 0.53 0.17 0.54 0.13 1.00 

The observed sample correlation matrices for two independently generated samples 

of size 1000 are given below. 

Sample 1  1.00     

  0.34 1.00    

 
ijφ̂  = 0.26 0.40 1.00   

  0.31 0.18 0.13 1.00  

  0.33 0.10 0.23 0.05 1.00 

 

Sample 2  1.00     

  0.27 1.00    

 
ijφ̂  = 0.25 0.32 1.00   

  0.31 0.16 0.13 1.00  

  0.33 0.10 0.27 0.07 1.00 
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Comparison of the sample matrices with specified population illustrates the fact that 

the method works accurately enough for study of taxometrlc methods to be used in 

psychopathology. It is true, however, that some of the elements of these matrices depart 

significantly from the specified values. This is apparently due to error in the integration to 

obtain 9ij as a function of ρij and error from the interpolation required to obtain ρij values 

for corresponding 9ij values. 

 The method is essentially the same as the multivariate normal one except that each 

standard normal variate yi is dichotomized by a cut at pi. The only problem results from 

the fact that any given value for the ρij matrix does not result in the same value for the 9ij 

matrix (except in the special case where they each are the identity matrix) as the latter 

matrix elements are very roughly two-thirds the size of the former ones. Thus, it is simply 

necessary to adjust the ρij values for this shrinkage so that the 9ij values are of the size 

desired. 

 When pi and pj are both between .30 and.70 and 9ij is between 0 and 0.5, there 

appears to be an approximate linear relation between ρij and 9ij given roughly by  

9ij = .60ρij  or  ρij = 1.679ij  although it has not been determined how accurate the 

relationship is. It would be interesting to sample uniformly from the lines of the table in 

Appendix B and determine the accuracy of the multiple regression equation for predicting 

ρij from 9ij, pi and pj. If everywhere accurate enough such an equation could replace the 

table. Possibly a more promising way to express ρij as a function of 9ij, pi and pj,  
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however, is to use the formula for the tetrachloric correlation coefficient which can be put 

in the form 9ij = f(ρij, pi, pj) where f is an infinite series. To obtain f 
–1, Newton's or 

Horner's methods can be used according to McNemar (pp. 193ff, 1962). 

 

V. Specification of the Taxonomic Class Distribution 

There are at least three major properties of a taxometric theory which are of interest 

to study. First, it is of interest to determine the power of the method for accurately 

detecting taxonomies which have (a) various degrees of taxonomic class distribution 

overlap and (b) various degrees and kinds of assumption departures. Second, it is of 

interest to determine the ability of the method to avoid spurious taxon detection under any 

conditions. Third, it is of interest to determine if the consistency tests correctly identify 

accurate vs. inaccurate parameter estimates, and spurious vs. non-spurious detection. 

According to the nature of the derivation of the formulae for the estimation of the latent 

parameters, it would appear to clearly follow that if the assumptions are satisfied well 

enough then the method will work well enough with respect to the above three matters of 

concern. In other words, to study the major properties of a taxometric theory requires only 

a study in what happens under systematic departure from the ideal conditions specified by 

the assumptions. Hence we next consider how the pi and 9ij values can be selected in order 

to do this. 

 As the generator method is intended to be used separately for each taxomomic class, 

the various properties of the indicator distributions will be considered as functions of the 

specifiable parameters pi and 9ij for just a single taxonomic class.   
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a)  Indicator Mean 

The mean of a key is simply Σpi. 

 b)  Indicator Variance 

The variance of a key is given by 

( )

2
i i iji, j

i j

σ p q 2 Σ c
≠

= Σ +  

where cij is the covariance between items i and j. This formula can be rewritten as 

( )

( ) ( )2
i i ij i i j ji, j

i j

σ p q 2 p 1 p p 1 pφ
≠

= Σ + Σ − −  

If pi = p for all i then 

( )2σ npq n n 1 pqφ= + −  

 where φ  is the average of the 9ij's. It is seen, then, that when the variance of a key is to 

be controlled it is helpful to have either 9ij = 0 or pi = p. 

By systematic variation of the means and variance of each taxonomic class 

distribution, the effects of taxonomic class distribution overlap and ratio of taxonomic 

class variances can be studied. 

c)  Indicator Skewness and Kurtosis 

If the 9ij are all zero then the resulting distribution is quasi-normal. It is not 

necessary that the pi's be equal (for proof see p. 24ff, Golden and Meehl, 1973a). As the 9ij  

are made to depart positively from zero in various ways, evidently, the distribution can be 

made skewed in either direction, platykurtic or leptokurtic, bimodal, U-shaped or J-

shaped. 
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d)  Correlation Between Two Indicators 

If the Indicators x and y are keys of length n, with average within-key interitem 

correlations wxφ  and wyφ , and with an average between-key interitem correlation bxyφ  then 

McNemar (p. 207, 1962) showed that the correlation between the two keys is given by 

( ) ( )

2
bxy

xy

wx wy

n
r

n n 1 n n 1

φ

φ φ
=

+ − + −
 

when all items of  both keys have the same pi value. Thus, by controlling wxφ , wyφ and bxyφ  

we can control rxy. In Figure 1 where wxφ  = wyφ  = bxyφ  = φ  it is seen, for example, that for 

20 item keys it is necessary to keep φ  below .05 in order that rxy be less than 0.5 which is 

usually required by the maximum covariance theory (Golden and Meehl, 1973b). 

According to limited Monte Carlo evidence, the normal theory (Golden et al., 1974b) 

requires that rxy be less than 0.8 or φ  be less than .20. 

The base-rate of a taxonomic class is handled differently than the other parameters. 

Suppose that the compound sample size is to be N and the population taxonomic class 

proportion is pj. The sample proportion  is distributed normally with mean pj and 

variance pj(1 – pj)/N; hence a univariate normal random number generator can be used to 

obtain  and Nj = N. 

jp̂

jp̂ jp̂

 In specifying the pi's and the 9ij’s there is a more subtle consideration which must be 

made. This consideration results from the fact that the number of times the generator is 

used to create a data sample to be mixed with the others is not necessarily the number of 

taxometric classes if the taxonomic situation is as described by the taxometric theories 

mentioned herein. It could be that pi and 9ij values chosen are approximately those 
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Figure 1. The Pearson correlation between two keys as a function of the common 

keylength for different values of the common average interitem correlation 

within key,φ . 
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of, say, a compound group consisting of two (or more) taxonomic classes. If such an error 

is made, then, among other things, the actual number of taxonomic classes is at least one 

more than it is thought to be. To demonstrate this possibility, suppose that a compound 

group consists of two taxonomic classes, denoted by subscripts 1 and 2, one with base-rate 

P, and within each class the item covariances are all zero. Then the covariances for the 

compound group are given by 

cij = PQ(pi2 – pi1)(pj2 – pj1). 

Thus, if there exist values of P, pi1, and pi2 (i = 1, 2, …, n) which satisfy the equations 

 9ij pi(1 – pi) pj(1 – pj) = PQ(pi2 – pi1)(pj2 – pj1), 

 pi = P pi2 + Q pi1  and 

 pj = P pj2 + Q pj1 

where the pi’s, pj's and 9ij 's are specified, then the data of two taxonomic classes are 

simulated rather than that of one. It should be noted that the equations need be satisfied 

only in the approximate sense as would be the case for two real taxometric classes. There 

are   + n = 
n
2



 

n(n 1)
2
+   such equations whereas the number of unknowns P, pi2, and pi1 is 

only 2n + 1. Therefore, the system is usually well overdetermined and a solution should 

not accidentally happen to exist due to sampling error. If a method does produce such a 

too-many-taxa result, the above equations can be resorted to in order to see if the method-

produced suspected parameter estimates are approximative solutions.  
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How one can best take into account all the relations concerning the 9ij’s and the pi’s 

simultaneously remains to be determined. Usually there is no problem in picking the pi’s, 

but the selection of the 9ij’s can become complex. We typically want to control 

simultaneously for variances, general distribution shapes, covariation between indicators, 

and covariation within indicators as each has to do with a kind of manifestation of 

departure from the ideal condition in which all the 9ij’s are zero. It is necessary that 

indicator distributions be specified in terms of skewness, variance, intercorrelatlon, 

homogeneity and the like as these are the parameters, in terms of which we have some 

knowledge as to the nature of real distributions. Further, we cannot be concerned about 

how well the taxometric method works for every single set of values of the 9ij matrices 

even with each matrix element restricted to just three values as there are just far too many 

combinations to make this feasible. There are two queries then: “What are the algebraic 

procedures specifying the 9ij’s for getting any desired multi-indicator distribution given in 

terms of skewness, homogeniety, and the like?” and “How can such procedures be made 

quick and simple to use?”. One approach would be to select 9ij and pi values semi-

randomly and then record the resulting indicator distributions and descriptive statistics 

along with the pi and 9ij values. (We assume here again that N is sufficiently large so that 

sampling error need not be of concern.) This procedure would be continued until either we 

have a catalogue of every kind of multi-indicator distribution we might wish to use or until 

we are not able to generate a new kind of distribution. This may seem like an ambitious 

task but it would appear that there are not more than a few hundred qualitatively different 

appearing distributions for two or three indicators. 



 

 

 – 21 – 

VI. Simulation of Real Data 

Another question about the method stems from the obvious fact that it does not allow 

or require use of all of the degrees of freedom available in specifying a taxonomic class 

distribution. A population taxonomic class distribution is uniquely specified in terms of 

the proportions of individuals for each of the 2n different vectors of item responses (z1, z2, 

z3, …, zn). Since items are restricted to be dichotomous, we have 2n – 1 degrees of 

freedom in specifying a distribution. The random number generator method requires 

specification of only  independent values of 9ij and n independent values of pi or 
n
2
 
 
 

n(n 1)
2
−  + n = n(n

2
+1)  independent parameter values all together. The quantity 

 2n – n(n 1) 1
2
+

−  is greater than zero for n ≥ 3 and is very large for common values of n in 

taxometric work. For example, if n = 10, the quantity is 1024 – 55 – 1 = 968 and there are 

968 degrees of freedom used in some unknown manner by the generator method. In other 

words, the method imposes (hidden) constraints of an unknown nature that require a large 

number of degrees of freedom. This leads one to wonder just what sort of distributions can 

be generated by the method. This question remains even though the discussion of the 

preceding section indicates that parameters can somehow be specified to obtain any sort of 

assumption departure one might conceivably desire. The reason being that the familiar 

properties of distributions such as variance, kurtosis, homogeneity, and  
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the like may not include all of the important ones to be considered with regard to 

assumption violation for a taxometric theory. 

Since what we ultimately wish to do is simulate real distributions, it would be of 

interest to see if this can be done for a large variety of real taxa, real non-taxa and, since 

there is a shortage of proven instances of these, of real criterion group distributions. The 

comparison would be in terms of (a) the familiar descriptive statistics and (b) the various 

important taxonomic parameter estimates resulting from analyzing compound groups of 

pairs of real taxonomic class distributions. If it proves possible to obtain nearly the same 

results for real and artificial data for a large variety of situations then one would have 

more confidence that the method is capable of adequate simulation of real distributions for 

the present purposes. It is of crucial importance that there obtain a positive result here 

especially since it is not known how the unaccounted for degrees of freedom are absorbed 

by the method. In intuitive language, the suspicious possibility which must be dismissed is 

that the method cannot generate onerous distributions like some or many or most real ones 

are and the Monte Carlo study of a taxometric method with gentle and tame distributions 

is not sufficiently tough and is, therefore, unilluminating. 

It might be possible to resolve the above problem in the following way. Suppose 

some real data are analyzed by a taxometric theory and a taxonomy is detected with all 

consistency tests passed. We then classify individuals into, say, two taxonomic classes, 

denoted by s and n, and determine the misclassification rates, R1 and R2, by a method 
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given In Golden and Meehl (p. 31ff, 1973a). The interitem covariances for each 

classification group, c1ij and c2ij, are given by 

c1ij = R1csij + (1 – R1) cnij + R1(1 – R1)(psi – pni)(psj – pnj) 

c2ij = R2csij + (1 – R2) cnij + R2(1 – R2)(psi – pni)(psj – pnj) 

which can be solved for the taxonomic class covariances csij  and cnij once the psi’s and 

pni’s have been obtained by simultaneously solving the pair of equations 

 p1i = R1 psi + (1 – R1) pni   and 

 p2i = R2 psi + (1 – R2) pni . 

Using the resulting intra-taxonomic class correlation values, we use the random number 

generator method to generate a sample of the same size which is then analyzed by the 

taxometric method. If the consistency test and parameter estimation results are sufficiently 

close to the real data ones we need not doubt the random number generator method at least 

in this instance. Generating several such artificial samples would help determine how 

much sampling error must be considered. 

Even though a detected taxonomic situation is simulated very well, the detection still 

could be inaccurate or spurious. Adequate simulation is evidently just a necessary 

condition for  accurate and non-spurious detection. 

In summary, the Monte Carlo method is resorted to for two quite different 

procedures. First, it is used for the approximation of the functions relating parameter 

estimate errors and consistency function values. Second, it is used to simulate the 

estimated taxonomic situation resulting from analysis of real data by a taxometric  
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method. Each of the two Monte Carlo procedures result in requirements, which are 

considered as necessary for the existence of a real taxonomy with parameter values as 

estimated by a taxometric method. 
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