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Taxometric Methods 
PAUL E. MEEHL AND ROBERT R. GOLDEN 

THE THREE KINDS OF TAXOMETRIC TASKS 

“Taxometrics” may be roughly defined for present purposes as the branch of 
applied mathematics that treats of problems of classification. “Classification” in 
the broad sense includes both the process of constructing or inferring classes 
(“classification” in the narrow sense) and the sorting of individuals into such 
classes (“assignment,” “identification,” “diagnosis”). It is not of course confined 
to psychopathology or to the classification of persons, or even the classification of 
living organisms, whether by behavior or other attributes, since stars and stones 
are also the subject matter of numerical taxonomy (as one can learn by attending 
meetings of the Classification Society). Like any applied mathematics, the 
discipline includes metatheoretical concepts—not just a formalism, but an explan-
atory (interpretative and motivating) text. 

The word “taxon” cannot be precisely defined without arbitrariness, as will 
become clear in the discussion that follows. But as in other fields of science—a 
point often not understood by social scientists—explicit and purportedly rigorous 
verbal definitions of a domain or a method are not necessary. The meaning of both 
theoretical and metatheoretical terms is best set forth contextually, that is, by the 
formalism and the interpretive text itself. As a first rough meaning-stipulation 
adequate to delimit our task in this chapter, we may say merely that a taxon in 
psychopathology is an entity, type, syndrome, species, disease, or more generally, 
a nonarbitrary class. The distinction aimed at by this crude definition is that 
between a taxonic situation and the mathematics appropriate to it, and a non-
taxonic situation, such as a dimension. We think of schizoidia or Huntington’s 
Disease as a taxon. We do not think of garden variety social introversion (such as 
measured by MMPI scale Si) as a taxon or type, but rather as a dimension. 

All taxa are classes, but not all classes are taxa. There are as many classes of 
individuals in psychopathology, or within normal populations of human beings, as 
there are cutting scores on dimensions, or conjunctions, disjunctions, and other 
logical functions of attributes. The purpose of taxometrics is to help the investiga-
tor identify and sort those categories of individuals that are in some sense “really 
in nature,” that would be there whether or not clinical psychologists had bothered 
to take notice of them or were clever enough to detect them. In the famous phrase 
attributed to Plato, the aim of the taxometrician is to “carve nature at its joints.” 
These crude meaning stipulations and metaphors will suffice for now, because the 
nature of taxonicity will be explicated in the rest of the chapter. 

Initially, in contemplating a domain like psychopathology where it occurs to 
an investigator to apply some statistical procedure to observations about the 
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persons’ behavior, dispositions, or inferred traits, to sort them into types or 
clusters or taxa (from here on we shall simply say “taxa”), we can notice three 
distinguishable states of antecedent information, states of the investigator’s 
knowledge that will appropriately affect his or her strategy and tactics, and, in 
particular, help in selecting the mathematical formalism appropriate to a taxo-
metric task. We do not here prejudge whether these three are basically different, 
that is, different epistemologically, mathematically, causally, or pragmatically 
(this latter in the context of decision making, what to do with an individual person 
taxometrically classified by the method chosen). Granting that these prior 
knowledge conditions may or may not be fundamentally (qualitatively) different, 
nothing hinges upon that question in our treatment. Perhaps the best way to see 
whether they are different in important ways is to consider that question after 
having concocted a research strategy associated with a substantive theory, or at the 
least a substantive metatheory, and then to distinguish the conditions contextually 
or implicitly. Putting it strongly, the character of the distinction between these 
three antecedent states of knowledge becomes clear only after the research task is 
well under way. But at the extremes, despite borderline region cases, these states 
of knowledge seem usefully distinguishable as follows: 

I. Accepted criterion prediction. Here the investigator knows with high 
confidence that there is a taxon, and he or she knows how to identify the 
individual persons who belong to it and who fall outside it. Here “accepted 
criterion” may designate something definitional, as a clinician literally 
defining schizophrenia as a psychosis involving a specified kind of thought 
disorder, so that the validity of the sign is, so to speak, stipulative. Alterna-
tively, the investigator may have in mind a sufficiently good empirical 
causal connection, whether based upon a strong theory or previous research, 
so that he or she possesses a two-way pathognomonic sign, a trait or symp-
tom serving almost perfectly both as an inclusion and an exclusion test. He 
or she does not quite want to call this sign definitional; but one can for most 
purposes treat it as almost so.  
    An investigator’s willingness to consider a sign stipulative or definitional 
depends partly upon his or her long-term research program, and partly upon 
philosophy of science considerations that will be discussed below. Thus, in 
the case of schizophrenia, for some scholars it is a psychotic thought 
disorder of such and such quality and intensity. For others, thought disorder 
is a high weight indicator (for us it would be a nearly infallible inclusion 
test), but it is not definitional because a theory of schizotypy as a person-
ality organization or as involving the specific etiology of a dominant schizo-
gene would provide the explicit definition. Therefore the thought disorder, 
while a highly privileged indicator, is nevertheless not definitional for 
scholars holding those views. We should emphasize also that most philoso-
phers of science today would question whether a clear distinction can be 
made here, in the light of current views concerning the implicit or con-
textual definition of theoretical entities in empirical science.  

II. Classical cluster analysis. In this situation, the kind typically envisioned by 
investigators in the Classification Society, there is no known taxon having 
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an accepted criterion as in Case I, nor is there a conjectured taxon whose 
existence and indicators the investigator considers well enough corrobor-
ated so that he or she will allow it to play a major role in the taxometric 
search procedure. Instead the investigator has a kind of “metaconjecture” to 
the effect that taxa (usually plural in this knowledge state) do exist in the 
domain of entities under study, and hopes that he or she has succeeded in 
concocting a set of domain-relevant indicators for his or her initial list. In 
the extreme case of no theory or even theory-sketch, the provisional indi-
cator list may have been made deliberately to include every attribute of the 
entities in the set on which there is any appreciable variation among 
individuals. If this has been done, and no initial differential weights are 
assigned on theoretical or clinical grounds, we have the extreme case of 
what some have complained of as “blind” numerical taxonomy. Such a list 
of unweighted indicators, in which we ask how many different ways one 
honeybee may observably differ from another, is that advocated by such 
eminent contributors as Sneath and Sokal (1973). 

III. Conjectured latent taxon. Here the investigator has some degree of pur-
ported knowledge from his or her clinical experience, or statistical study of 
file data, and maybe the sketch of a theory, which leads him or her to 
conjecture the existence of a taxon. But the taxonic conjecture is highly 
problematic, and furthermore the investigator may have only moderate 
confidence in his or her list of admittedly fallible indicators, since their 
validity is conjectural even if one were to grant for the sake of argument the 
reality of the taxon itself. It is improbable that anyone would conjecture the 
existence of a latent taxon unless he or she had noticed clinically or detected 
statistically some kind of co-variation of behaviors. 

In Case I, accepted criterion of the taxon’s membership, what is the motivation 
for a taxometric analysis? Why trouble ourselves to construct a linear discriminant 
function or some nonlinear function to discriminate the groups, or a Bayes’ 
Theorem inverse probability from symptom pattern, or a function-free actuarial 
table such as advocated by Lykken (Lykken, 1956; Lykken & Rose, 1963)? It is 
initially puzzling, since we possess an accepted criterion, either definitionally or 
from previous causal knowledge, leading to an extremely high indicator weight so 
that there exists an indicator that is almost infallible, why we would concoct a 
function or table of fallible indicators. We already know that the taxon exists, and 
we already know “who is who,” that is, which individuals belong to it and which 
fall outside it. 

One reason we might want to do this is in cases of concurrent validity 
(Cronbach & Meehl, 1955), in which the accepted criterion used in identifying 
individuals as being within the taxon or outside it is too costly, painful, or 
dangerous to collect routinely on all patients or on all persons being screened, but 
in the investigator’s research context this (normally unavailable) accepted criterion 
is available on all cases. 

Another reason is in the predictive validity situation, in which the accepted 
criterion that defines taxon membership becomes available only at a later point in 
time. Ascertaining its presence is not costly, painful, or dangerous, but we may 
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have good clinical or other reasons to try to make a decision in advance as to that 
person’s taxon membership prior to the time when the defining sign appears. An 
example is forecasting who will develop Huntington’s Disease among a group of 
individuals known to be at risk because of having a Huntington’s afflicted parent, 
when the subject of genetic counseling must decide whether to marry and have 
children (see Lyle & Gottesman, 1977). Again, if one anticipated an epidemic of a 
disease in which only a minority of patients develop a certain dangerous or 
residual-producing complication, immunization against the disease might be 
strongly advised for persons especially prone to the complication. This sort of 
example is one that influenced Carnap in his classic paper on testability and 
meaning (Carnap, 1936, 1937) to distinguish confirmability and testability as 
positivist meaning criteria, and to advocate confirmability as the more “tolerant” 
criterion. If I can’t produce the disease, I cannot (at will) test the dispositional 
hypothesis “Jones (presently not ill) is prone to complication C should he fall ill 
with disease D”; but I may yet confirm this hypothesis, because if he should fall ill 
with the disease, then we will discover whether he develops the complication or 
not. We do not wish to deny empirical significance to the statement “Jones is 
C-prone” prior to his falling ill, partly for clinical (prophylactic) reasons, but also 
because it is by attaching significance to the confirmable but untestable C-state-
ment that we motivate a research strategy that includes search for antecedently 
available indicators of his complication proneness. 

A third possibility, more common in economics and not there usually taxonic, 
but at least imaginable in psychopathology, is the case in which the qualitative 
nature of some of the fallible indicator variables put into the taxometric equation 
or actuarial table makes them plausible candidates to be causative, so that one may 
attach a causal weight or influence interpretation to the beta coefficients. An 
important variant of this one in psychopathology, as in schizophrenia research, is 
the possibility that one of the indicators of high weight, while not causative itself, 
is a pleiotropic indicator of the causal schizogene, for example, a soft neurological 
sign, or the alleged anomaly in nail-fold capillary bed in the nonpsychotic relatives 
of schizophrenic probands (Buchanan & Jones, 1969). 

Why classify people at all? Arguably, part of the problem in taxometrics, such 
as the low yield of formal cluster algorithms in psychopathology research to date, 
lies in failure to put this initial rock bottom question before proceeding to invent 
interperson similarity measures and search procedures for clustering within such 
similarity matrices. One easy case to defend is that of purely administrative con-
venience. If we have a cutting score on an engineering aptitude test, we may sort 
people into “good risks,” “probationary risks,” and “poor risks—reject applicant.” 
But nobody conjectures that these are taxonic, either in terms of the predictor 
variable or in terms of the ultimate criterion, since an administrative change in the 
honor point ratio required to remain in engineering school would reclassify 
individuals on the borderline. Despite its unavoidability, especially in legal con-
texts in which what the psychologist sees as dimensions are usually replaced by 
quality words (predicates, categories instead of continua), this situation has no 
theoretical importance and will not be discussed further. 

A second consideration is convenience in communication, as when we 
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summarize a great deal of our knowledge, including low probability or highly 
problematic conjectural knowledge about a patient, by saying “she is hysteroid” or 
“he is a borderline sociopath” or “so-and-so is a latent manic-depressive.” It is 
doubtful that clinicians could talk with each other if they were strictly forbidden to 
employ such summarizing rubrics as this, although the dangers of reification when 
the entity has no existence, as well as premature diagnostic closure by one’s 
adoption of the semantics, are well known. 

Another case is somewhat more substantive, although related to the com-
munication or summarizing function; that is, that we don’t have to gather all the 
research data on patients in one huge project. Example: No one seriously 
imagines that there are fewer than, say, 100 test scores, traits, or life history facts 
that would be needed to characterize an individual adequately for most clinical 
purposes, including features such as the disposition to respond favorably to one 
drug rather than another, suicide risk, therapy stayability, job satisfaction, and the 
like. But even such a carefully pruned list of attributes means potentially 4950 
pairwise correlations among them. Very few clinical research projects have suffic-
ient staff and money to process a sizeable number of patients with respect to 100 
variables. It would be wasteful if we lacked some way of allowing investigator X 
in Albuquerque to relate two drug responses to the amount of schizoid component 
in manic-depressive patients, and later make use of the fact, when we survey the 
research literature, that investigator Y in Minneapolis has discovered two new soft 
neurological signs of the schizoid component, although Y has not studied the 
therapeutic effects of psychotropic drugs on his cases. It is obvious that organic 
medicine would have progressed much more slowly had it not been possible for 
different clinicians (and pathologists, biochemists, epidemiologists, geneticists, 
physiologists, and bacteriologists) in different places, studying nonoverlapping 
groups of patients, to mediate the connection of their investigations via a diagnos-
tic rubric. In terms of the difference between input and output variables, instead of 
having mn input-output correlations to investigate, we may substitute the stochas-
tic relationship between the m indicators and the nosological entity on the input 
side, and the relationship between the nosological entity and the n indicators on 
the output side. There are then (m + n) relations to be studied instead of (mn) of 
them, a considerable economy in both communication and research costs. 

Another consideration is a clumping in two kinds of spaces, say, as the space 
of job descriptions and the space of personal traits. Large-scale personnel contexts 
such as the military have found it useful to group jobs on the basis of a statistical 
study of the components in a job analysis, attempting to map, even though only 
probabilistically, clusters of enlisted men (in terms of their tested interests and 
abilities) against the job clusters. There is here an economy of transfer and 
retraining, and we note that might be the case even if there were no marked degree 
of “clumping” in the two phenotypic hyperspaces, although the more clumping 
there is, the more saving is achieved. But even if there were homogeneity in the 
space, it might still be worthwhile to do it. 

Finally, and of most interest to the present authors in connection with 
schizophrenia research, there is the purpose of theoretical (= causal) under-
standing. A side aspect of this is file research, in which a statistical power function 



 6 

on some variable of interest may be greatly improved by homogenizing the 
patients, although failure to homogenize the patients would not constitute a 
vitiating error in most studies, contrary to what some clinicians have alleged. 
Nevertheless, if we are looking for a weak effect, or even an effect that is reversed 
in some categories, the fact that the patient is not available for assessment makes it 
desirable to find nosological discriminations recorded in the chart. 

When we speak of a taxon as “latent,” what meanings might this have? One 
meaning is environmental stimulation that has not yet been made explicit or 
discovered. This would be the only kind of latent taxon readily allowed by strong 
Skinnerians. Another meaning of “latent” in the psychopathology context is 
historical, a slight stretching of the meaning, but indicating that the factor is not 
presently visible in the patient’s behavior or surround. It is an event in the past that 
may or may not be in the record, and in fact, even in extensive uncovering therapy 
as classical analysis, may or may not come to light as an alleged fact of memory. 
Examples are a battle-axe mother; Freud’s early theory of prepubertal sexual 
seduction as the specific etiology of hysteria and the obsessional neurosis (which 
disorder, of the two, depends upon whether the future patient was mainly passive 
and experienced fear or disgust or mainly aggressive and experienced erotic 
pleasure); head injury; undiagnosed mumps encephalitis; and the like. These 
examples show that a latent taxon can be connected with a specific etiology that 
does not have to be a gene, or a germ, or a “disease” in any strong sense of that 
word. If Freud’s theory had been factually correct, the specific life history event 
could have been taken as the stipulative definer of hysteria, or at least given such a 
high weight that a patient might be refused the diagnosis, even if he or she 
presented conversion phenomena when seen. 

Another meaning of “latent” is a causal factor within the person. This is 
perhaps the most natural meaning for the clinical psychologist. By “within” is 
meant literally within, that is to say a gene, a germ, a brain tumor, a psychological 
complex, an unconscious fantasy, a repressed memory, and the like. 

CLINICAL DISCOVERY OF SYNDROMES 
With these possible meanings in mind, let us reflect metatheoretically on a 
hypothetical example outside of psychopathology, namely, the discovery of a new 
organic disease. Dr. Fisbee is a practitioner with research interests (for a nice 
illustration in psychopathology, see Freud’s classic paper on the anxiety neurosis 
and his reply to Loewenfeld’s criticism of it, Freud, 1895a,b). Dr. Fisbee is struck 
with the fact that in the last few months he has seen five patients who presented 
with complaints of headache and spots before the eyes, and on examination had a 
low-grade fever, a slightly purplish tongue, and pink ears. He hadn’t really 
“noticed” this pattern until seeing the fourth patient, and the fifth patient seemed to 
corroborate that he was seeing something orderly that he hadn’t studied in medical 
school. So he goes back to his charts and satisfies himself that he has in fact seen 
five patients with the combination. He then remembers a few others who had 
presented only a part of the combination; for instance, in several the purple 
tongue, the subjective complaints, and the elevated temperature were present, but 
the pink ears were not. He also reflects that he misdiagnosed some of these 
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patients as having some other disease. On reading the chart notes for those who 
came back, as he asked, for follow-up, he finds that the subsequent course didn’t 
fit the diagnosis that he had made of some entity already known to him. So he 
publishes a clinical note, and Fisbee’s Syndrome gets into medical thinking, and 
then into the literature; and Dr. Fisbee is ultimately immortalized in Dorland’s 
Medical Dictionary for this discovery. Although the particular syndrome is hypo-
thetical, we are not here sketching out an improbable state of affairs, but on the 
contrary exemplifying the usual course of clinical investigation in organic 
medicine (see, e.g., Major, 1932). 

How does Dr. Fisbee think about it, definitionally and in terms of causal 
understanding, and more importantly, how about the university’s internal medicine 
professor who, having read the article, decides to research this entity? If one is a 
hard-line operationist, as some psychologists profess to be, although they are 
almost never consistently so when pressed, one wants first to arrive at a “clear 
operational definition” of Fisbee’s Syndrome. Presumably this would mean 
specifying the list of defining symptoms. At this stage of our knowledge, we do 
not know what is the cause of the syndrome, and we may not even have any 
conjectures, although the fact that elevated temperature is part of it and that it runs 
a short self-limited course (nobody has died of it yet), makes us think it might be 
an infectious disease; but that’s not totally clear. In any case, we do not know what 
kind of germ is involved, and we as yet do not have any tissue pathology. So one 
might say that the definition of Fisbee’s Syndrome lay wholly in the symptom list. 
That’s misleadingly simple, and it’s wrong. Seeing why it’s wrong will help the 
reader see why some of the statements made by psychologists about entities like 
schizophrenia that purport to be sophisticated are actually naive and based upon an 
undergraduate-level philosophy of science, and, it would seem, woeful ignorance 
of the history of developments in biology and medicine. We can’t simply say that 
the “list of symptoms” operationally defines the entity. We have to say how that 
list is put together in the definition. We have symptoms S1 (headache), S2 (spots 
before eyes), S3 (low-grade fever), S4 (purple tongue), and S5 (pink ears). First we 
think of a simple logical conjunction of the symptoms as defining Fisbee’s 
Syndrome. Will that work? No, it will not. Try to write an explicit operational 
definition of disease D as D = S1 • S2 • S3 • S4 • S5. This of course means that any 
patient lacking any one of the five symptoms is excluded. So the patient Dr. Fisbee 
remembered on reflection, who presented with the complaints of headache, spots 
before the eyes, purple tongue, and temperature elevation, but whose ears were not 
pink, cannot be “counted” as a case of Fisbee’s Syndrome. Now admittedly this 
could be treated as a totally stipulative matter in the fashion of the old-line 
positivists, who thought that a definition simply “recorded one’s decision to use a 
word in a certain way.” (We are not here arguing about words, or about the correct 
view that definitions are in some sense ultimately stipulative.) Why does not the 
sensible physician or medical researcher consider doing it in this way? It’s really 
very simple. In the history of medicine it has been repeatedly found upon thorough 
comprehension of a disease—in all of its important aspects, including its path-
ology and specific etiology, its course, the reasons why certain patients get well 
and others don’t, and why certain therapies work in some patients and not others, 
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all of them sharing the same disease when it is thoroughly understood—that there 
are very few symptoms that are absolutely two-way pathognomonic. 

Our Dr. Fisbee, the research-oriented practitioner, may have no interest in 
philosophy of science. He may never have heard of Carnap’s discussion of 
reduction sentences, or Pap’s classic fundamental paper on open concepts (Pap, 
1953; 1958, Chapter 11). But he is a sensible person, not having been brainwashed 
by some undergraduate social science course that delivered a simplistic view of 
“operationism,” and he knows from common sense considerations that the color of 
somebody’s ears is not likely to have a direct causal influence on the color of his 
tongue, and that neither one can produce a fever. Therefore, he reasons, if these 
various externally visible phenomena (together with the subjective complaint of 
headache and spots before the eyes) have a tendency to go together—both in the 
sense that they are found in the same patients with a disproportionate frequency, 
and in the P-correlation sense that they covary over time in the same patient as he 
falls ill and recovers—then there must be some common causal factor that 
produces all of them. Unless that common causal factor is sun spots or witchcraft, 
which Dr. Fisbee rationally doesn’t believe in, where does that common factor 
have to be? Well, if it’s in the world of space and time and material entities, the 
only place for it to be is inside the patient. That “something or other,” whatever it 
is, is the internal cause of the syndrome. In organic medicine it is the pathology of 
Fisbee’s Syndrome. A further conjecture is that this pathology is in turn caused by 
something specific, and that something specific may be in the person (as a mutated 
gene or a toxin or a germ) or a historical event such as trauma. A combination of 
these commonsense considerations with his knowledge of the history of medicine 
leads a rational medical researcher to the conjecture (which he hardly treats as a 
conjecture but as a near certainty, despite his slight knowledge of the newly 
discovered entity) that a specific etiology-cum-pathology underlies the phenotypic 
syndrome that first called his attention to the disease. To such a sophisticated 
research-oriented doctor, the cliché remark of some psychologists that it is 
“tautologous” to refer a symptom to a disease entity called schizophrenia is not 
sophisticated but merely ignorant. 

So the reason that a conjunction of symptoms won’t do is that it’s too strong. 
That is, it would result in too many false negatives, since every symptom must, on 
that view, be an infallible exclusion test. But the history of medicine, as well as 
our overall knowledge of how the innards of the body work makes it immediately 
comprehensible why the relations between the symptoms pairwise are only 
stochastic. The reason that the pairwise correlations of the five symptoms are 
stochastic, although some of them may be high (if the syndrome is “loose,” it will 
be harder for Dr. Fisbee to notice it), is that they all have a merely stochastic 
connection with the specific pathology, and that fact results in their imperfect 
correlation among themselves. 

Seeing that a conjunction of symptoms as the explicit operational definition of 
disease D is too strong, it then occurs to a philosophically oriented pathologist to 
substitute a disjunction of symptoms, that is, we try D = S1 ∨ S2 ∨ S3 ∨ S4 ∨ S5. But 
a disjunction is just as bad as a conjunction, and in fact somewhat worse, because 
whereas a conjunction was somewhat too strong, a disjunction is grossly too weak. 
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It suffers a vast excess of false positives, because it treats each of the separate 
elements of the syndrome as if it were a perfectly valid inclusion test. Notice how 
social science is unlike medicine in this respect. Most social scientists wouldn’t 
like to pay much attention to a sign that is often present in a great variety of 
diseases. But no physician wants to drop a symptom like elevated temperature out 
of the list of symptoms of, say, an infectious disease, despite the fact that there are 
literally hundreds of conditions—and not all of them infectious diseases—that 
may produce fever. We don’t want to leave elevated temperature out of our set of 
indicators for measles or malignancy or uremia, but obviously a disconjunctive 
definition of any of the diseases with elevated temperature as one of the disjuncts 
would result in a ratio of false positives to valid positives that would be an order of 
magnitude or two greater! 

One important difference between the way organic medicine makes inferences 
and the way the psychologist or sociologist typically does is that a logical tree, 
with stepwise exclusion of possibilities, means that a sign may not be attended to 
at one stage in the diagnostic process but becomes critical at another stage 
because, while not powerful as an inclusion test, it is a powerful exclusion test. 
This is a different way of proceeding from an assignment of beta weights, or the 
unit weighting of low validity test items in a personality inventory. An inclusion 
test is a sign that is almost never present unless the disease is present and whose 
manifestation therefore permits us to infer the disease with high confidence. An 
exclusion test rules out the disease, in that it is almost always present when the 
disease is present, so its absence makes the disease almost certainly absent. 
“Pathognomicity” in medicine, when not otherwise defined, more commonly 
seems to mean an inclusion test; but the strong meaning is two-way pathogno-
micity, that is, a sign whose presence rules the disease in and whose absence 
definitively rules it out. Some social scientists assume, quite wrongly, that two-
way pathognomicity abounds in organic medicine, but we have yet to find any 
physician who claims to know of many literally pathognomonic signs for the 
various organic diseases. 

Why is not the entity the same as the syndrome? Passing the inept objection 
about circularity, the reason that the entity is not the syndrome is that we have a 
conjectured latent cause, which we confidently anticipate will, given adequate 
research, some day be the explicit definition of the disease; but that pending that 
research outcome, the disease is an open concept. What we are saying, roughly, is 
in the form of a scientific “promissory note.” We take it for granted that there 
exists a unitary underlying latent pathology-cum-etiology that gives rise to the 
correlation of the symptoms (S1, . . . S5) but we don’t yet know what that latent 
causal factor is. When we do know it, it will become definitive of the disease. At 
present, the disease D is not strictly defined. It’s a fuzzy notion, an open concept 
(Pap 1953, 1958; Meehl 1972c, references cited p. 21). Its meaning is not empty 
because it is stipulated as partly that which underlies the production of Fisbee’s 
Syndrome, as probabilistically linked to each of the phenotypic facets of the 
syndrome. But obviously it would be bad semantics to claim that we are explicitly 
defining “Fisbee’s Disease” by Fisbee’s Syndrome, or even that we’re claiming 
that nobody can “have the syndrome” if any one of the elements is missing 
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(conjunctive stipulation); or even worse, that anyone can be said to have the 
syndrome whenever any one of the elements is present (disjunctive stipulation). 

There is an interesting and instructive oddity about symptom percentages in a 
medical book being presented for a disease whose specific pathology and etiology 
are not yet known. A hyperoperational critic might ask, what does it mean to say 
that a certain percentage of patients have each symptom of the disease when the 
entity consists of “nothing but” the symptoms? The answer, of course, is that the 
disease entity does not consist of “nothing but” the symptoms. The disease 
consists jointly of the (unknown, conjectured) latent pathology-cum-etiology taken 
together with the symptoms, this “taking together” being stochastically under-
stood. If that Papian notion is too subtle or complicated for a psychologist, he or 
she should perhaps pursue some other area than psychopathology, since nature 
apparently is not simple enough for such a simplistic philosophy of science. 

So we see that doctors were thinking about open concepts and promissory 
notes before a philosophy of science that treats of these notions came to be 
invented, and certainly long before any formal mathematical taxometrics was 
invented. It is worthwhile, however, to pursue the usual superoperationalist 
objection a bit further. While we are forced to grant that a conjunction is too 
strong and a disjunction too weak to make clinical or theoretical sense and to 
motivate meaningful research into the inner nature of Fisbee’s Syndrome, it does 
seem a little strange to say that a person can have Fisbee’s Disease without 
showing a single element of it. Now, of course, if the patient doesn’t present any 
symptoms or complaints at all, he or she won’t come to the doctor (or, if in a 
routine physical, no clinician will think anything’s the matter with him or her). 
Nevertheless, we do have to make some philosophical place for the accepted idea 
of a silent disease. In organic medicine it is taken for granted that diseases can be 
symptomatically silent. For instance, consider a person who has never gone to a 
physician complaining of any of the usual kidney symptoms, let alone the 
excruciating pain of a renal calculus. At post mortem, following being killed by a 
truck, it is discovered that the entire kidney lumen on one side is totally occluded 
by a huge mass of potassium phosphate and carbonates, the so-called “staghorn 
kidney.” In an interesting study of his own diagnostic errors, a high-caliber Min-
neapolis internist (Peppard, 1949) showed that even being very hard on himself 
about the cause of his errors, the commonest single source of omission diagnostic 
error was literally symptoms or signs not found, meaning that he had carefully 
looked for them properly, with the best available techniques, and the patient 
simply did not show the sign. It is strange that psychologists would think that the 
mind is so much simpler than the innards in organic medicine that, whereas the 
idea of a neurologically silent brain tumor or a silent carcinoma of the liver or a 
silent staghorn kidney can exist, yet it couldn’t be possible that there could be a 
silent schizoid component or a silent psychological complex or a silent tempera-
mental disposition! 

If we understand why each pairwise correlation is stochastic—because each 
sign is only probabilistically linked to the (unknown) causal factor that will 
ultimately become definitive of the entity—it is obvious that a certain probability 
attaches to each of the possible configurations, including having all five symp-
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toms, four but not five, three but not the other two, and so on. Then it is quite 
arbitrary—given that causal model and our epistemic situation—to cut at having 
one symptom, at “symptom score” 0/1. Because the probability for each symptom 
Si being p(Si/D) < 1, the joint probability for absence of all five S’s is not zero, 
excluding a very unlikely configural effect not disease-related. Consequently, a 
person can have Fisbee’s disease (“silently”) even if none of the symptoms is 
present. There is nothing complicated about this, once one understands the 
distinctions among epistemology, statistics, and causality. 

Notice that the existence of degrees of a trait as an indicator of a latent taxon 
does not preclude taxonicity. One still hears the stupid objection that there can’t be 
an “entity” schizophrenia because all degrees of thought disorder (or inappropriate 
affect, or withdrawal) exist. This is about as bright as saying that there can’t be 
such a thing as meningitis since one of its exclusion tests is high fever, and all 
degrees of fever exist in sick people! We hope it is not necessary to treat further of 
that pseudo-sophisticated complaint. 

CLINICAL TAXA AS OPEN CONCEPTS 
This is not the place to develop a detailed philosophical analysis of open concepts, 
but readers are urged to look at the paper of Pap (1953; 1958), and, if the subject 
interests them sufficiently, the set of related articles cited in Meehl (1972c, p. 21). 
It is almost universally accepted among logicians and historians of science today 
that most theoretical concepts are not defined operationally in Bridgman’s original 
sense, but are defined contextually or implicitly, that is, by their role in a network 
of nomological or statistical “laws.” The possible exceptions to this statement are 
still in debate, and they are so rare, even in highly developed sciences like physics 
and chemistry, that it seems rather pointless to argue the question for psychopath-
ology. Thus to say that intelligence is what an intelligence test measures, or that 
the intelligence factor g is adequately “defined” (in any strong, strict meaning of 
that term) by the subtests of an intelligence test, is an oversimplified and mis-
leading account. But in a richer and subtler sense, it is contextually “defined,” 
although careful usage would say that the meaning is partially given or stipulated 
by the theoretical network, however tentative and as yet impoverished that net-
work may be. The “meaning” thus contextually provided is an open concept 
meaning, a partially specified notion, so its denotation is a “fuzzy set.” We hold 
with Sir Karl Popper (1962, pp. 18-21; 1974, pp. 12-23) that stipulating meanings 
is a trivial and unimportant exercise compared with testing theories, and that the 
scientifically valuable components of the former are normally achieved via the 
latter. Crudely put, you know what you mean by an entity to the extent that you 
have a set of concept-overlapping statements in the theoretical language, and a 
proper subset of those statements are linked to statements in the observational 
language. These statements are, in different ways, all about the entity—where it’s 
found, what brings it about, what it does, what are its various properties (including 
“compositional properties,” what it’s made of and how). Only a few of these 
properties are directly tied to observables. A reader with philosophical interests 
should have a look at Carnap’s classic paper on testability and meaning as a starter 
into the theory of open concepts, and then read Pap. 



 12 

Three kinds of openness of concepts, which are not equivalent but which are 
related, are described in Meehl (1977, 1978). The first kind of openness is the kind 
expounded by Carnap, and further developed by Pap. It arises from the fact that 
even a dispositional concept (e.g., solubility, dominance, or, in psychopathology, 
depression proneness) is specified by a list of indicators or symptoms (whether 
testability or confirmability be imposed as a condition of scientific acceptability), 
and such a list is extensible. The extensibility of the list of indicators was one 
reason why Carnap introduced the idea of reduction pairs as a substitute for 
explicit definitions in his original classic paper. We find out that if a wire touching 
a frog’s muscle makes it twitch, a compass needle brought near the wire will be 
deflected. So we now have two indicators of the latent mysterious “electric 
current” (long before we knew about electrons, let alone the Fermi mathematical 
theory of the electron gas). It then turns out that a wire that has these two proper-
ties will also, if snipped and immersed in a silver chloride solution, deposit silver 
at the cathode. If connected with a filament in an exhausted bulb, it will produce 
light; and so forth. As Carnap points out, although each of the reduction sentences 
added to the list might be looked upon as, in a sense, a definition (a convention, a 
meaning specifier), when we put two or more of them together, we are automa-
tically committed to a synthetic claim about a question of fact, that is, that the 
indicators will agree. That is one of the earliest showings by a logician that the 
distinction between definitions and empirical statements is not a clean one in the 
theoretical sciences. In psychopathology we might originally give a tendency to 
striped muscle conversion reactions a privileged status in identifying the hysteroid 
disposition. But subsequent clinical experience and psychometric research leads us 
to consider a patient’s preference for certain defense mechanisms (e.g., repression, 
denial) and various other attributes of the personality structure (impunitive 
reaction to frustration, a tendency to manipulate the environment by histrionic 
threats and gestures, a combination of hypersexual signaling with frigidity, etc.) as 
more privileged indicators than whether one uses a paralyzed arm to get out of 
washing the dishes. 

A second kind of openness applies even to the single indicator, namely, that 
the connection between the latent entity (or even the open concept, without 
explicit reference to the promissory note of causality) is probabilistic rather than 
strict or nomological in character. This state of affairs is even true in the physical 
sciences, as Pap pointed out in his classic paper on why we can’t have a strictly 
operational closed-concept definition of temperature. Nobody can stick a thermo-
meter into the center of the sun, but we need to talk about the sun’s temperature, 
and we don’t wish to say or imply that this is a totally different concept from the 
temperature of a blast furnace or a bowl of soup. A fortiori, in the life sciences we 
have to rely on alternative epistemic paths. Any complicated organic system 
presents occasions for nuisance variables or random factors, usually both, to “get 
in the way” between the conjectured specific causal entity (germ, gene, complex, 
drive, memory, or whatever) and our fallible phenotypic indicators of the latter. 
They have to be fallible, because they are connected with the causal entity by a 
chain whose links always include stochastic rather than strictly nomological links. 
This is why one can give strictly operational definitions of most psychological 
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attributes only by deceiving himself, or alternatively, by confining himself to the 
most trivial instances and insisting, by God, that the mind had better be simple 
because that’s the way we want to think about it! 

A third kind of openness in concepts Meehl has dubbed “Orphan Annie’s 
Eyes.” In the usual logician’s diagram of the nomological network, the strands of 
the net are the conjectured laws connecting the conjectured entities between which 
the laws hold. The entities are the nodes of the network, and are implicitly defined 
by their role in the network. Those nodes of the net are drawn as little circles, and 
remind one of the vacuous eyes in the juvenile fascist “Orphan Annie,” in a comic 
strip by that name during the Great Depression. The openness of these “Orphan 
Annie’s Eyes” nodes in the nomological net corresponds to the fact that we don’t 
know the inner nature, that is, the composition and structure, of the theoretical 
entities insofar as they are only contextually defined by their role in the net. 

The gene provides a beautiful instance of “filling in Orphan Annie’s Eyes.” 
The gene begins as a Mendel factor, as a conjectural entity that is latent with 
respect to the observed statistics of fertilization in garden peas and the phenotypic 
traits of fruit flies. The discovery of linkage maps and the realization that the 
number of linkage groups corresponds to the number of chromosomes in a species 
makes it natural to conjecture that the “factors” are entities having a physical 
location at a certain position along the chromosome; hence we have the con-
jectured gene. Further evidence then shows us that cytological anomalies (e.g., 
translocation) are associated with pronounced aberrations in the linkage statistics 
of a fly strain. Finally, with the discovery of the giant chromosome in the salivary 
gland of Drosophila we are able to see that X-ray bombardment resulting in a 
recessive acting strangely like a dominant suggests that there ought to be a “hole” 
at a certain place on the giant chromosome. Sure enough, direct cytological study 
shows an “empty place” there in the predicted position! 

Notice that every one of these operations, while it locks in the concept of a 
gene by a very nice and intellectually satisfying nomological network, neverthe-
less still has the gene as an Orphan Annie’s Eye. Only with the solution of the 
DNA problem by Crick and Watson, where we now explicitly define the term 
“gene” as a cistron, and a cistron as a certain sequence of codons, and a codon as a 
certain sequence of the four bases, adenine, guanine, cytosine, and thymine, do we 
fill in Orphan Annie’s Eyes. For the first time we can offer a truly explicit 
definition of the word “gene.” It takes us over half a century to get there, and a 
very powerful and intellectually exciting science of genetics existed prior to Crick 
and Watson’s solution of the double helix. Even that definition is not operational 
in the usual sense, because the term “gene” is itself defined reductively, that is, in 
terms of theoretical concepts from another science, namely, organic chemistry. We 
note, finally, that it is now conceptually detached, so that a gene made in the 
laboratory by human molecular biologists, and not put into a protoplasmic 
surround where it is capable of controlling anything phenotypic as an indicator, 
would still be a gene in the full sense of the word. 

It is foolish in psychopathology to pretend that there is any magical way, by 
either statistics or verbal definitions, to avoid these three kinds of openness. Part 
of the purpose of a taxometric formalism is to tighten up the open concept by 
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refining the mathematical characteristics of the net. Putting that together with an 
embedding explanatory text tells us something about the entities that the abstract 
notation of the formalism denotes and quantifies. 

We may have spent more time on general methodological considerations than 
necessary, but experience in attempting to explain our own new taxometric 
methods, and reading of the controversial literature on diagnostic categories (e.g., 
“labeling theory”), combine to convince us that a certain amount of Augean 
stable-cleaning is needed as propaedeutic to an intellectually respectable treatment 
of the taxometric problem in either its mathematical or epistemological aspects. 

FORMS AND DEGREES OF TAXONICITY 

We now approach the difficult question: what is taxonicity as a concept? After 
several years of philosophical and mathematical effort, plus surveying taxonic 
entities in several fields other than psychopathology, we have regretfully con-
cluded that the reason it is so hard to give a good definition of “taxon” is that 
taxonicity itself is not taxonic but is a matter of degree. We use the word “taxonic” 
rather than “taxonomic” because taxonomy is the metatheory of classification. 
Strictly speaking, it is an abuse of language to speak of a taxonomy as being the 
taxonic entities themselves. The taxonomy is the taxonomist’s science of taxon-
omizing; the taxa are entities that (if he or she is right in his or her conjectures) 
exist in the world. A fact-situation is not taxonomic; it is the investigator’s 
approach that is taxonomic. When we refer to the state of nature that the scientist 
conjectures to exist when proceeding taxonomically in his or her research, that 
state of nature should be called “taxonic.” 

All efforts that we have made (and they will not be reported here) or that we 
have seen others present, whether in psychopathology or in the other life sciences, 
to give a purely phenotypic characterization of taxonicity are fuzzy at the edges 
and liable to misinterpretation. This holds true even for those “conventionalist” or 
“economical” taxonomies that avoid theory and causality and confine taxonic 
interpretation to densification in the phenotypic hyperspace. Such a clumping or 
clustering admittedly is what normally leads the clinician or researcher to notice a 
conjectured taxon in the first place. The initially unpleasant truth of the matter—it 
turns out to be pleasant, insofar as it relieves us of the burden of giving an 
explicitly operational definition of “taxonicity” that will satisfy everybody—is that 
there are several kinds of causal paths to generation of a clumping or clustering of 
phenotypic characteristics in the descriptive hyperspace, and some of them are not 
interesting theoretically or valuable pragmatically. Any factor, including arbitrary 
social selection factors that determine subpopulations to come before our eyes, 
that can densify the descriptive hyperspace in a certain region more than one 
might have anticipated by contemplating, say, the Pearson r’s of the indicator 
variables taken pairwise (calculated over the whole realized space) can thereby 
produce a situation that one might legitimately call “taxonic” in one of the several 
senses presented above. Example: Most of us probably would think of “being a 
bridge player” as taxonic; witness the way the question is put: “Do you play 
bridge?” The person queried might answer, “Yes, but not very often.” or “Not very 
well.” But we do not expect him or her to say, “I don’t know, it depends on your 
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cutting score.” It is an empirical fact that if a person knows the word “renege,” he 
or she will (p > .99) know the words “vulnerable” and “slough.” Those who know 
how to respond to a certain bid will almost certainly have a statistical tendency to 
avoid certain ways of dealing with the cards in the dummy if they are playing the 
hand. The taxonicity of some acquired skill patterns is so “tight” that industrial 
psychologists can make trade tests using as few as eight or 10 verbal items (e.g., 
“What is a chuck used for?”, identifying lathe operators). If one constructed an 
achievement test of terms from contract bridge playing without deliberately 
rigging it, employing a suitable kind of random choice from the words appearing 
in a bridge manual glossary, he would undoubtedly find a clearly bimodal 
distribution and would conclude that bridge playing was taxonic. It is nevertheless 
true that no matter how many such items we added in order to slice the pie finer, 
there would be an admittedly tiny (but not zero) number of scores in the valley 
between the two curves. They would be people who came to have these 
intermediate achievement scores in special and unusual ways. For example, a man 
goes hunting with his friends; they are snowed in; and his three friends insist on 
teaching him bridge. He doesn’t want to learn, but he goes along to be 
cooperative. He isn’t grabbed by the game, and he has never played it since. Such 
a person could have a score in the valley between the two modes. 

A more distressing example of pseudo-taxonicity is what would happen if one 
foolishly threw together scores on the WAIS subtests for inmates of a state insti-
tution for the mentally retarded with a random sample of normals. There would be 
an appearance of a big taxon, but only some of the people in that low IQ group 
would represent truly taxonic entities, such as one of the Mendelizing mental 
deficiencies, or one of the developmental anomalies. Others would simply be the 
low end of the normal polygenic intelligence curve, appearing as a taxon because 
of the fact that an institutional population was thrown together with a general 
population of “normals.” There is no point in multiplying examples. The simple 
fact is that there are various ways in which a phenotypic clumping or clustering in 
a descriptive hyperspace can be achieved. There are as many different defensible 
meanings of “taxonic” as there are causal origins of clumps or clusters. 

Our own preference, which we have no desire to force upon others, is that if a 
strong meaning of the word “taxon” is to be adopted, it should be like that of 
medicine and genetics, namely, a causal-theoretical meaning. But even if this 
convention is accepted, it doesn’t solve the problem. One may prefer to think of a 
true taxon—one that carves nature at its joints and is not merely administrative, or 
the demarcation of a region on a dimension for communicative ease, or because 
the courts understand category concepts better than metrical concepts—as causal, 
involving a specific etiology. We then have to ask the further metatheoretical 
question; what do we mean by the phrase “specific etiology”? Meehl (1977) has 
set out a series of meanings of “strong influence,” only the strongest of which are 
specific etiologies as that term would be used in, say, medicine or genetics. 

In a causal interpretation of strong taxonicity, we define the latent taxon in 
theoretical terms. That is true of our conceptualization and our research strategy, 
even if the theoretical terms themselves are only vaguely contextually understood 
at a given stage of the research enterprise. This means that we need not struggle to 
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attain a definition of taxonicity by reference solely to the phenotypic distribution, 
that is, by the distribution properties of the fallible indicators. Furthermore, we 
know (see, e.g., Murphy, 1964, and the example above) that a latent taxon can 
exist, as theoretically comprehended with reference to its causality or inner nature, 
without generating a bimodality, although we would hope that our indicators are 
powerful enough so that we can detect a latent taxon by means of some features of 
the distribution, when the multivariate distribution in the phenotypic hyperspace is 
analyzed by appropriate taxometric methods. 

The strongest meaning of “taxonicity” in causal terms is that the disease entity 
or personality type has its causal origin in a specific dichotomous etiological agent 
such as a mutated gene, or a specific germ, or a particular life history event, for 
example, a head injury In the ideal case, the specific causal agent C is nonarbi-
trarily dichotomous, that is, it is present or absent on the basis of a predicate or 
property that does not possess intermediate gray region degrees. (Perhaps it 
“could,” conceptually, but in fact it does not.) The strongest meaning is exemp-
lified when the dichotomous etiological agent C is both necessary and sufficient 
for the phenotypic disease syndrome to appear, as in Huntington’s Disease, in 
which all those who carry the Huntington mutation will develop the symptoms 
provided they survive the morbidity risk period, although in some Huntington 
sibships this means that a person might have to live to be 70 years of age. A 
slightly weaker meaning, but one that we find readily accepted by everyone as 
inherently taxonic, is that of a sine qua non, a necessary but not sufficient 
condition for the syndrome (Meehl, 1972c). In medicine and genetics, threshold 
effects and step functions are also strong meanings of taxonicity. Thus one who 
receives less than a specified minimum intake of niacin for a sufficient time period 
will develop pellagra. 

Once we pass beyond these forms—necessary and sufficient dichotomous 
etiology, necessary dichotomous etiology, and necessary threshold (or step-
function) etiology—we are in a region of decreasing strengths of specific 
influence, in which it would be easy to find disagreement among reflective and 
informed persons as to whether they would consider them instances of specific 
etiology or not. For these other forms of strong influence mathematically defined, 
see Meehl (1977). The easiest way in this frame of reference to avoid semantic 
disputes about whether a situation should be called truly taxonic or not is simply 
to specify which of the kinds of strong influence the theoretician has in mind. 

It is a puzzling historical fact (Meehl, 1979) that formal cluster algorithms, that 
is, taxometrics of the kind we have earlier called Type II, the classical cluster 
analytic problem, have not been responsible for discovering a single taxon in 
psychopathology or, so far as we are aware, in organic medicine. In fact, one can-
not even make a clear case for saying that while informal clinical (or experi-
mental) methods have initially revealed the entities, formal cluster algorithms have 
at least clarified subsequent taxonomic controversies. Should an entity be sub-
divided? Ought certain atypical clinical cases be subsumed under an entity as 
formes fruste? Is an entity genetically homogeneous? Should a taxon be extended; 
for example, is Hoch and Polatin’s “pseudo-neurotic schizophrenia” concept 
useful (Hoch & Polalin, 1949), or is it an illegitimate and confusing extension of 
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the concept schizophrenia? 
Alas, even such a clarifying function as to entities provisionally conjectured 

from nonformal methods by clinical experience cannot be historically docu-
mented. Meehl (1979) has in the above cited article listed eight possible explana-
tions of this somewhat surprising state of affairs, which, if left unexplained on the 
shelf, might reasonably discourage the psychoclinician from pursuing taxometrics, 
since it doesn’t seem to have much payoff even if it’s philosophically and 
mathematically amusing. We have no stake here in denigrating formal cluster 
algorithms, but content ourselves with that observation, referring the reader to 
Meehl’s paper cited and moving now directly to that one of the three taxometric 
knowledge situations to which we have devoted our efforts, namely, Type III, the 
conjectured latent taxon problem. 

THE BOOTSTRAPS APPROACH 
The first knowledge situation, that is, the case in which we have an accepted 
criterion and the investigator, knowing there is a taxon, wishes to do a better job 
identifying the persons who belong to it, is outside the scope of this chapter. 

For Case I, where there is an accepted criterion variable telling us to which 
taxonomic class each individual actually belongs, there are well-known methods, 
such as linear discriminant function analysis first developed by R. A. Fisher 
(1936). For [this Handbook] to be complete, it should include a chapter describing 
these methods, and we originally prepared this chapter with that understanding 
(see Preface [to Handbook]). Here we refer the reader to only some of the 
textbooks and papers that the quantitative researcher in psychology will find 
useful. In order to be consistent with the usual terminology in this literature, we 
refer to the indicator variables (e.g., signs and symptoms) as the “independent” 
variables and the virtually infallible criterion variable as the “dependent” variable. 
The general mathematical-statistics problem is to find the function of the 
independent variables that gives the most accurate classification on (or, more 
generally, maximizes the statistical association with) the dependent variable. 
Probably the most commonly used solution to this problem is for linear functions 
of independent variables such as in the discriminant function and multiple 
regression methods. Several appropriate textbooks discuss different versions of 
these and related methods (e.g., Lindgren, 1962; Draper & Smith, 1966; Roze-
boom, 1966; Cornfield, 1967; Tatsuoka, 1971; Overall & Klett, 1972; Kerlinger & 
Pedhagur, 1973; Finn, 1974; Lachenbruch, 1975; Morrison, 1976). The desir-
ability of using differential rather than equal unit weights in the linear function 
should not be taken for granted, since the former are subject to sampling error so 
that the linear function sometimes lacks robustness when used in samples other 
than the one on which it was developed (e.g., see Guion, 1965; Nunnally, 1967; 
Darlington, 1968; Wainer, 1976; Dawes, 1979; Dawes & Corrigan, 1974). When 
using a weighted linear function, there are useful papers regarding missing data 
(Chan & Dunn, 1972), estimation of classification error rates in new samples 
(Lachenbruch & Mickey, 1967; Dunn & Varady, 1966; Dunn, 1971), and 
unreliability in the dependent variables (Gilbert, 1969; Goldstein, 1977). 

Regarding the use of dichotomous independent variables, Lachenbruch and 
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Mickey (1968) show that the “jackknife” method, where each individual is classi-
fied by a different discriminant function (that derived on the remaining N – 1 
individuals in the sample) is superior to several other methods in that it yields 
(almost) unbiased estimates of error rates. 

The advantages of using a function more complex than linear to capture 
interaction, configural, and nonadditive effects were suggested long ago (e.g., see 
Meehl, 1950) and studied (e.g., see Goldberg, 1969). The use of a function-free 
actuarial table was advocated by Lykken (1956) and Lykken and Rose (1963). 
When the independent variables are dichotomous (or categorical), Bayes’ 
Theorem (e.g., see Hays, 1973) and applications of it (e.g., see Solomon, 1961; 
Bailey, 1965) are the most obvious nonlinear method. 

The above references are in no sense complete and in part represent the result 
of our own selective sampling of the vast literature on Case I research methods. 

We will briefly survey the formal cluster algorithm methods used for the 
classical cluster analytic problem and then devote the remainder of the mathe-
matical discussion to Case III, the conjectured latent taxon problem, after saying 
something about bootstraps methods generally. 

The term “bootstraps effect” was first introduced by Cronbach and Meehl 
(1955). Surprisingly, the terminology was criticized by some intelligent people on 
the grounds that it implied that you were lifting yourself by your bootstraps; 
whereas the reason Cronbach and Meehl chose that terminology was precisely to 
emphasize the counterintuitive finding that one can psychometrically “lift oneself 
by the bootstraps,” if it is done right. The essential idea of the bootstraps effect as 
described by Cronbach and Meehl in 1955 was that one can construct an empirical 
scale such as an MMPI key by empirical keying against a rather poor, low-
accuracy fallible criterion (such as unreliable diagnoses by unskilled psychiatrists) 
and, if one is lucky and clever and the item pool is rich enough, can nevertheless 
emerge with a scale that diagnoses more accurately than the clinical examiners 
did. It is incredible but true that there are still psychologists who don’t understand 
this simple point. Bootstraps effects abound in the other sciences, and for that 
matter, in ordinary human artifacts. Thus, for instance, humankind began making 
tools with chipped flint, and it is paradoxical but true that we now can grind metal 
surfaces to a smoothness that involves a variation of only a few molecules’ 
thickness. 

A simple example of a bootstraps effect is a disease entity like general paresis. 
As late as the turn of the century, it was still argued whether or not lues was the 
specific etiology of “general paralysis of the insane,” and the argument was not 
clinched until 1913 when Noguchi and Moore found the spirochete in the brains of 
paretics. But notice that in order to find the spirochete in the brains of paretics, one 
had to rely upon a fallible, although by then rather high accuracy, diagnosis of 
who is a paretic. Of course there was an intermediate finding of the characteristic 
cerebral pathology (without the etiology), so Noguchi and Moore did not have to 
rely solely upon phenotypic phenomena like the Argyll-Robertson pupil, or the 
patient spilling soup on his vest, showing poor judgment and irritability, having 
trouble saying “hard riding artillery brigade,” and so forth. But suppose the 
biochemist or clinical neurologist had done as we sometimes are forced to do in 
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psychometrics, that is, had tried a large number of candidate indicators on paretics 
versus patients suffering from various other kinds of neurological disorders also 
involving impairment of motor function and a dementing process. Suppose that the 
diagnosis of paresis at 1875 was only 75% accurate in the eyes of Omniscient 
Jones. If the neurologist had tried out a long list of tests, determining blood 
turpentine level and the Wasserman and the spinal fluid gold colloid test and the 
Schick test and the Mantoux, what would happen? Positive blood Wassermann 
and first zone gold colloid spinal fluid would each have an extremely high 
construct validity for paresis. An “item analysis” of a long list of candidate 
indicators would select these two items (both in reality 95% or better two-way 
pathognomic for the disease entity), even though they had to be discovered on 
diagnoses that were only 75% accurate, and hence cannot display their true 
validity against formal clinical diagnosis as the available criterion. 

Of course the problem is to know when you have successfully achieved a 
bootstraps effect of this sort; but it’s obvious that medicine has done it repeatedly, 
as have other scientific disciplines. So there is nothing all that strange about the 
bootstraps effect in psychometrics, except that psychologists are so hooked on 
operationism that they have been reluctant to admit it. The best example of it in 
psychometrics is doubtless the intelligence test, which was originally seen to be 
valid, in contrast with previous efforts to measure general intelligence with 
Wundtian procedures like two-point touch threshold, because it showed a 
characteristic developmental change with age, and it agreed well with the pooled 
judgments of schoolteachers as reflected in social facts like age-grade location. 

Consider another example outside psychometrics. If three surveyors each come 
forward with new methods for estimating how far away a distant mountaintop is, 
and each of them offers a plausible, but not cogent, theoretical rationale for think-
ing his method works, then a discovery that the three methods converge in their 
estimates to a high numerical accuracy tends to corroborate the construct validity 
of all three of them. For this reason the common undergraduate principle, 
“Unreliability proves lack of validity, but reliability doesn’t prove validity,” is 
somewhat misleading because a nonchance agreement of anything, including a 
pair of test items or two forms of a test, does prove validity for something or other. 
If that kind of “convergent estimate” reasoning were not essentially valid, no 
science, including the physical sciences, could get off the ground. 

The most dramatic example of bootstrapsing we know of in taxometrics is the 
“Super-Bootstraps Theorem” proved by Meehl in 1965 (pp. 37-48; cf. also Meehl 
1973, pp. 216-217). Suppose that one has a set of fallible phenotypic indicators of 
a latent taxon that are substantially independent within the taxon and its 
complement, this being checkable by several nonredundant consistency tests (see 
below). Having estimated the taxon base rate P in a given population, we define 
subgroups of patients on the basis of the pattern of positive and negative 
indicators. Thus, if there are three fallible indicators, each cut at a certain point to 
maximize hits, we have 23 = 8 cells of patients, within each of which a Bayes’ 
Theorem inverse probability of taxon membership is computable from the 
patient’s indicator pattern. The Super-Bootstraps Theorem shows that if the latent 
structural model is satisfied and the sample is large enough to give stable estimates 
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of the numerical values, then, if there exists an optimal cut on some new fallible 
indicator v, chosen so that the proportion of patients classified as within the taxon 
of interest matches the taxon membership probability of any one of the cells, in 
order for this cut to yield v+ rates that match the Bayes’ Theorem probabilities in 
the remaining cells, it is both necessary and sufficient that the v-cut be infallible 
(two-way pathognomonic, functioning perfectly both as an inclusion and exclusion 
test). This is such a remarkable theorem that we have been puzzled why, despite a 
generalization of it published by Dawes and Meehl (1966), it has come in for 
almost no attention in taxometrics. 

MAXCOV-HITMAX METHOD 
We illustrate our conception of bootstraps for taxometric Case III, the conjectured 
latent taxon problem, with a simple crude form of one of our taxometric methods, 
MAXCOV-HITMAX (Meehl, 1973a, pp. 200-224). This is only for pedagogic 
illustrative purposes here, as a more general and rigorous formulation of the 
MAXCOV-HITMAX Method will be explained later on. Suppose we conjecture 
that in a population of psychiatric patients not formally diagnosed as schizo-
phrenic, there exists a taxon, the schiozotype (Rado, 1956; 1960; Rado & Daniels, 
1956; Meehl, 1962; 1972a, 1972c). Our theory sketch, based upon some combina-
tion of clinical experience, psychiatric genetics, and preliminary statistical analysis 
of file data, is that there are quite a few patients who have the schizotypal 
personality organization (and, on our dominant gene hypothesis of the disorder, 
are carriers of the specific schizogene) but who have not decompensated clinically 
to the extent of presenting the classical textbook picture of a “florid schizo-
phrenia.” These considerations from our antecedent state of knowledge are men-
tioned solely to motivate the research strategy. They are not going to be relied on 
in the traditional statistician’s sense of “needful assumptions.” We do not treat any 
of the conjectures, main or auxiliary, as “assumptions” in that strong sense. 
Everything said, whether in the formalism or the interpretative text, is conjectural, 
although obviously at any given stage of scientific and clinical knowledge of a 
disease entity or personality type, some conjectures are more problematic than 
others. That a conjecture is highly problematic, in the sense of taking a big risk, 
going out on a limb far beyond the facts presently known, does not speak against 
it. From a neo-Popperian standpoint this is, on the contrary, a methodological plus. 
We are interested in trying to test this risky conjecture that a taxon “schizotype” 
really exists in our clinic population. 

Note how much is conjectural and how little corroborated at this point. We 
conjecture that there is such a taxon, but we do not “know it.” Philosophically, of 
course, one never knows anything empirical for certain, but in common sense and 
in most scientific usage, highly corroborated conjectures that also fit into a larger 
network of highly corroborated theoretical conceptions are said to be “known.” If 
there is such a taxon, we do not know with what relative frequency it occurs in our 
population, that is, we are ignorant of its base rate P. We do not know whether the 
extra-taxon class (taxon complement) is itself taxonically differentiated, although 
we think it likely, on general previous knowledge, that it is; but taxometric 
discrimination among the cases outside the conjectured schizotypal taxon is not of 
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interest to us except as a dangerous source of error in identifying the schizotype. 
We have tentative notions about some indicators (interview, psychometric, neuro-
logical) of the taxon, but we lack numerical estimates of their validities and the 
optimal cut on those that are dimensional rather than a qualitative predicate. We 
do not know the valid and false positive rates achievable by the best cut. We do 
not know what the indicator distributions are shaped like, and we are unwilling to 
conjecture that they are normal or equal in variance. We do not know whether the 
candidate indicators are appreciably correlated within the schizotypal taxon, if it 
exists, or outside it. We are aware of the unpleasant possibility that a schizotypal 
discriminator may also have some validity for some unidentified extra-taxon 
groups, in which case the indicators will necessarily be correlated pairwise in the 
complement. In short, we know essentially nothing, and about some of these quan-
titative questions we do not even have plausible conjectures. Such a knowledge 
situation is evidently a classic case appropriate for bootstraps taxometrics. How 
can we get taxometric knowledge out of ignorance? We shall see. 

Suppose we have three quantitative indicator variables conjectured to have 
some validity for the schizotypal taxon, namely, x: MMPI Scale 8 [ = Sc ]; y: a 
Rorschach schizoid composite index; and z: quantified subclinical dysdiadocho-
kinesia. The choice of indicators is motivated partly by previous experience 
suggesting validity, and partly by the desire to choose phenotypically “non-
overlapping” behavior domains to minimize methods covariance, so that the con-
jectures of near-zero correlation within the taxon and within the complement have 
a good chance of being nearly correct. In addition, we may undertake a minim-
izing of undesired intrataxon covariance by ordinary item analytic procedures 
(done on diagnosed groups) for those variables that are item composites, such as 
structured inventory scores, or in the case of nonitem measures, by a suitable non-
linear transformation of the metric. 

If desired, a preliminary investigation of this intrataxon correlation question 
can be conducted, although the interlocking consistency tests discussed below 
should suffice to corroborate that auxiliary conjecture. The problem about direct 
testing of the near-zero correlation auxiliary conjecture is, obviously, that in a 
mixed psychiatric population, there is some unknown base rate P of schizotypy. 
Therefore, cases categorized by formal diagnosis cannot be used to answer this 
question by direct empirical methods. However, we can increase the prior prob-
ability of that auxiliary conjecture by testing not the mixed bag of psychiatric 
patients but a group of thoroughly studied patients diagnosed as clinically schizo-
phrenic. Ideally, we would add some cases diagnosed “schizophrenia in remis-
sion” and, in some prospective studies, preschizophrenics (e.g., college students 
who took the MMPI as freshmen and subsequently are found in state hospitals 
with a diagnosis of schizophrenia). If the pairwise correlations of the three 
indicators x, y, z are close to zero in various diagnosed schizophrenic populations, 
we have some confidence that a semicompensated (e.g., pseudo-neurotic, border-
line state) psychiatric population would also show low correlations, although that 
does not follow with necessity. 

On the other side, consider a sample of nonpsychiatric presumed “normals.” 
On our conjecture that the specific etiology is a dominant schizogene of low 
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penetrance, the fact that the diagnosed schizophrenia rate in first-degree relatives 
of schizophrenic probands is in the neighborhood of 12%, instead of the theo-
retical 50% on a perfectly penetrant dominant gene hypothesis, means that the 
clinical penetrance is only about ¼. Since the general population lifetime risk for 
schizophrenia is in the neighborhood of 1%, this suggests that the frequency of 
persons in the general nonpsychiatric population carrying the schizogene is around 
4%. This being a rather small proportion, we can safely assume that the statistical 
tail can’t wag the normal population dog enough to generate a taxonically induced 
covariance of x, y, and z among normal persons via the presence of only p = .04 of 
schizotypes among them. Therefore, the auxiliary conjecture in the complement 
class of zero correlation is fairly directly testable by correlating x, y, and z pairwise 
in a normal population. We repeat, these preliminary investigations are worth 
pursuing from the standpoint of saving time by early discovery of indicators that 
are excessively correlated within the taxon or the complement, but they are not 
strictly necessary because the auxiliaries will be part of the network tested by the 
consistency tests. 

We begin with a general formula for the covariance of a mixed population, 
where it is an algebraic truth (not dependent upon distribution assumptions) that 
the covariance of a mixed population is a simple sum of three terms. The schizo-
types are represented by subscript t (= taxon), the nonschizotypes by subscript c 
(= complement), and the base rate of schizotypy p. Then the (yz) covariance for a 
mixed population is given by 

 cov(yz) = pcovt (yz)+ qcovc (yz)+ pq(yt − yc )(zt − zc )   (1) 

This expression is derived in Meehl (1965, pp. 12, 28-29; see also Meehl, 1968, 
pp. 4-5). It is intuitively obvious that the covariance of a mixed group should 
depend partly upon the two within group covariances, these components being 
weighted in proportion to the group rates; and the third term, a kind of “validity-
mixture” term, reflects the influence of the crude validities expressed as differ-
ences of the latent means between the schizotypal and nonschizotypal subpopula-
tion on the two indicators, weighted by the product term p q, which is a measure of 
taxonic “mix.” One way to look at this third term intuitively is that patients high 
on indicator y will tend to be schizotypes, and therefore, if indicator z has validity, 
they will tend to be high on z. That is, the covariance is generated by the fact of 
taxon mixture. So this third term is the interesting one for taxometric purposes. We 
see that it tends to increase with increases in the true indicator validities, that is, 
the differences (yt − yc )  and (zt − zc ) , and also with the degree of taxonic “mix,” 
measured by the cross product of the schizoid taxon’s rate p and its complement 
q = 1 – p. This accords with intuition, since if the indicators had zero validity for 
the taxon, or if they had taxonic validity but the taxon was unrepresented in a 
population subjected to statistical study, this third term would vanish. 

The greatest taxonic “mixture,” that is, the opposite extreme from a “pure” 
population (consisting only of the schizoid taxon, or solely of individuals not 
belonging to it, where the cross product term pq = 0) is that of an even mix. For 
fixed crude indicator validities Δy = (yt − yc )  and Δz = (zt − zc ) , the smallest values 
of the “validity-mixture” term of the general expression are those for p = 0, q = 1, 
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or p = 1, q = 0; and the greatest value of this interesting term occurs for the even 
mix p = q = ½, where the product is equal to ¼. That is, in a population in which 
half of the patients were members of the schizoid taxon and half were not, the 
expected value of the validity-mixture term would be ¼ the product of the latent 
mean differences, that is ¼ ΔyΔz . 

Now making the simplifying approximate assumption (better, auxiliary conjec-
ture) that the indicators have been chosen or constructed in one of the three ways 
indicated above, so that within the schizoid taxon each indicator correlates 
negligibly with each other one, and ditto for the complement class, then in our 
equation 

 cov(yz) = pcovt (yz)+ (1− p)covc (yz)+ pqΔyΔz   (2) 

the first two terms vanish. Hence the total observed covariance cov(yz) is simply 
the product of the schizoid and nonschizoid rates times the product of the crude 
latent validities. The observed covariance of such a mixed population is con-
tributed solely by the indicator validities and the fact of taxonic mix. 

In Figure 5.1 we have a diagram with the vertical axis being a measure of 
clerical ability, and the horizontal being a measure of n Nurturance. Assume that, 
for the female sex considered by itself, there is no correlation between clerical 
ability and n Nurturance. Then the bivariate frequency distribution for females can 
be drawn as a circle, and the regression line of y on z within that circle is flat, has 
slope = 0.  Overlapping with that circle representing the females, but southwest of it  

on the graph, we see another circle representing the (yz)-distribution for males, 
assuming that within the male sex also there is no correlation between clerical 
ability and n Nurturance. This situation is the idealized one for taxometric 
analysis, because the two indicator variables are completely independent within 
the two taxa. Now if we consider the mixed population of males and females, 
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these two overlapping circles, the regression line within each of which is flat, are 
fused as an ellipse elongated in the northeast direction. The best fitting regression 
line for the mixed population does not have 0 slope but a positive slope, depending 
upon the size of the sex difference in clerical ability and n Nurturance 

If there were some way of arranging a sequence of clinical subpopulations in 
the order of their schizotypal rates, then, on the auxiliary conjecture that the 
covariances are zero within the taxon and its complement, the observed covari-
ances cov(yz) of that ordered sequence of populations should commence at zero 
for the subpopulation that contains no representatives of the schizotypal taxon and 
should steadily increase to a maximum, achieved within the subpopulation with 
p = q = ½, the maximum taxonic mix in which half the patients are schizotypal 
and half are not; and then should decline steadily to reach and remain at zero when 
we move into subpopulations in which all of the patients are schizotypal. This 
relationship between the observed covariance within a population of unknown but 
conjectured mix is already interesting and could be used for sign validation pur-
poses, and to test the model, if we had before us any group of populations some-
how identifiable as differing in the schizoid rate (see, e.g., Dawes & Meehl, 1966). 

But we need not know how to identify such populations qualitatively, nor the 
successive increments in schizotypal base rate in moving from one to the other, in 
order to carry out a remarkably powerful bootstraps operation, as follows: We 
have conjectured that a third indicator x, not yet used, also has taxometric validity. 
Assuming that x is uncorrelated with y and z within the two classes, and that there 
is no significant moderator effect, so that with increasing values of x there is an 
increased correlation of y and z apart from the taxonicity, one way to proceed 
would be simply to arrange subpopulations as defined by their x-values. Imagining 
the picture of the latent distribution on x shown in Meehl (1973a, p. 209), we can 
simply compute the observed covariance of y and z for each x interval beginning at 
the extreme left of the manifest (mixed) distribution. With a sizeable sample, if the 
validities are such as to have less than complete overlap on the x-indicator, this 
means that the first few class intervals we study at the lower end of the x 
distribution will be schizotype-free. That is, for each of those intervals pi = 0, and 
therefore the covariance of the two “output” indicators covi(yz) will be at zero 
within all of those intervals. Then as we begin to pick up a few schizotypes in the 
low tail of the latent schizotypal frequency function so that p > 0 and increases 
steadily while q goes down from 1, the observed covariance of yz takes on nonzero 
values and begins to increase. The hitmax interval on x is the interval above the 
intersection of the latent frequency functions on x. Cutting there maximizes the hit 
rate, taking account of the base rate P, so that the functions we are dealing with 
here should be unrelativized frequency functions, their ordinates being not intra-
taxon density functions but frequency functions reflecting the base rates P, Q. 

The hitmax interval hi we do not observe directly, because we do not know the 
latent distributions including their base rates, and so on, and we have no accepted 
criterion. But hi is nevertheless locatable by this bootstraps procedure. It will 
correspond to the class interval on the input variable x, which yields the maximum 
value of the output variable covariance covi(yz), that being the interval for which 
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p = q = ½, that is, for which the taxon mixture term has its maximum (= ¼ΔyΔz ). 
As we pass through the hitmax interval on indicator x and move into the higher 
region of the mixture distribution, where for each interval the proportion of 
schizotypes now exceeds one-half of the subpopulation frequency, and for 
which—if each of the two distributions is separately unimodal—the schizotype 
proportion steadily declines, we find the covariance of y and z declining steadily. 
It reaches the value cov(yz) = 0 when we come to the end of the upper tail of the 
latent nonschizotype distribution, above which point all of the patients are 
schizotypes in all of the higher class intervals of x, so no further change in the 
observed covariance of y and z is to be expected on the independence assumptions 
of the model 

But we now have a very useful number, namely, the presumed constant 
product K = (ΔyΔz ) of the crude latent validity increments. We know that for 
cases lying in the hitmax interval, cov(yz) = ¼ΔyΔz  = ¼K, the constant K being 
the fixed product of the crude “validities” (latent mean differences), permitting us 
to solve for K. Further, the general expression for the covariance of a mixed group 
holds for each of the class intervals, not just for the hitmax interval. Now that we 
are able to estimate the latent constant K by means of the hitmax interval’s 
observed (yz)-covariance, we can plug in that parameter K in the general 
expression covi(yz) = piqiK for each x-interval. So in each x-interval we have a 
quadratic in p, 
 Kp2 – Kp + covi(yz) = 0 (3) 

which we solve to obtain pi in each xi-interval. Of the two roots, which will of 
course be fractions, one less and one greater than ½, we choose the smaller root 
for all the x-intervals below the hitmax cut, and the larger root for all the 
x-intervals above the hitmax cut. 

Now we are in excellent shape, since by multiplying the observed crude 
frequency in each xi-interval by the schizotypal rate pi of that interval, we obtain 
the number Ni of schizotypes in each class interval of x. Adding these over the 
whole mixed population yields the total schizotype number for our sample 
ΣNi = Ns, and dividing this by the grand N of our sample gives us the desired latent 
base rate P. 

This bootstraps procedure is then repeated in the two other possible ways, 
which, while not totally independent, are largely nonredundant with respect to the 
first one. That is, we treat indicators x and z as output and plot their covariance 
against y as the abscissa variable, and similarly we treat z as the input variable and 
plot the covariance of x and y as output. In the course of these operations, the 
computer has, in effect, drawn us the three latent frequency functions with their 
overlaps. So we can calculate the valid and false positive rates achieved on each 
indicator taken separately when patients falling above the hitmax cut of that 
indicator are classified as schizotypal and those falling below the hitmax cut as 
nonschizotypal. 

Finally, knowing the grand base rate P and the valid and false positive rates, 
ptx, pty, ptz, pcx, pcy, pcz, we can plug these numerical values directly into Bayes’ 
Formula for inverse probability. Thus, suppose we have a patient from this 
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population who falls above the hitmax cut on indicators x and y, but below the 
hitmax cut on z. This pattern (x+, y+, z–) of scores on the three indicators yields a 
Bayes’ Theorem inverse probability that the patient is schizotypal as follows: 

 P(Sc / x+y+z− ) =
Pptx ptyqtz

Pptx ptyqtz +Qpcx pcyqcz
  (4) 

We present here only one example of a consistency test, namely, the total 
covariance test. Since the general equation for observed covariance of a mixed 
population holds generally, it holds for the total population under study, as well as 
for any of the subpopulations, however identified. Consequently, the grand covari-
ances of x and z, of y and z, and of x and y for the whole (mixed) population can be 
written in terms of the base rate P, its complement Q = 1 – P, and the latent mean 
differences as follows: 

 
Cov(xy) = PQΔxΔy
Cov(xz) = PQΔxΔz
Cov(yz) = PQΔyΔz

  (5) 

CONSISTENCY TESTS AND AUXILIARY CONJECTURES 
We must emphasize again that the auxiliary conjectures referred to, such as 
independence within the taxa and the absence of significant moderator effects, are 
made as assumptions to motivate the formalism but are not being empirically 
relied upon as trustworthy (or pious hope!) postulates. Rather they are jointly 
tested, together with all of the other auxiliary conjectures and the main assump-
tions of the model, by imposing numerical tolerance limits on departures from the 
theorems derived as consistency tests. The reader will totally misunderstand our 
bootstraps approach, and the neo-Popperian philosophy of science underlying it, 
and will consequently not know how seriously he or she should take the 
formalism, if he or she does not grasp our approach to this question. The satis-
faction (within tolerances) of the several consistency tests, which are not equally 
responsive to departures from different aspects of the conjectural latent model, 
shows what? It corroborates the substantive theory that there is a taxon, and that 
these indicators have substantial validity for it, together with all of the other 
conjectural assumptions in the explanatory text that interpret the formalism or 
justify taking a given step within it. This means that we are testing the crude 
theory sketch of the schizoid taxon and the auxiliary conjectures; and we are also 
tightening up the network defining the loose concept, “schizotaxia,” psycho-
metrically; and we are also validating the indicators. All of these are done simul-
taneously. When we corroborate the consequences of the nomological network, we 
corroborate the network. 

We do not dispute the desirability of being able to test substantive conjectures 
under circumstances in which the auxiliary conjectures are unproblematic. The 
difficulty is that in the life sciences, and certainly in the behavior sciences, this is 
an unusual state of knowledge for the investigator to be in when pursuing taxo-
metric research. Example: In testing a dominant gene theory of schizotypy by 
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studying the Rorschach responses of parent pairs of diagnosed decompensated 
schizotypal probands (“clinical schizophrenia”), we may rely upon psychometric 
extrapolation of Rorschach indicators from validation studies. But these studies 
are based not upon the compensated relatives of known schizophrenics but upon 
patients who themselves have been schizophrenic, or, very rarely, who were tested 
when normal and subsequently became schizophrenic. While this extrapolation 
has a certain plausibility, it is obviously not certain. An investigator who had 
immersed himself or herself in the genetics of schizophrenia might well surmise, 
at a given stage of knowledge, that the dominant schizogene theory is itself no 
more problematic than the Rorschach psychometric sign he or she plans to use in 
testing that theory. For a further discussion of this, see Meehl (1978) and a 
forthcoming book by Golden and Meehl. We must emphasize that qualitatively the 
situation in the life sciences is not different from that in the inorganic disciplines 
like astronomy and chemistry, in which breakthroughs have sometimes been 
achieved by challenging auxiliary assumptions that had been considered well 
corroborated. But there is a big quantitative difference, and it is foolish for the 
behavior taxometrist to pretend otherwise. 

We do not wish to defend an orthodox Popperian position as to the inherent 
desirability of low probability substantive conjectures (Grünbaum, 1976). But we 
think it fairly clear from the history of the sciences that theories do get their best 
support in the eyes of the scientific community by virtue of having made risky 
predictions. Our own view is that scientists usually prefer the theory T itself to be 
antecedently probable on the background knowledge, including other “accepted” 
theories. But they want its observational consequences to be antecedently 
improbable, absent the theory. This combination goes through nicely on a Bayes’ 
Theorem representation, but the logician then has to worry about how T can be 
antecedently probable and its observational consequence-class not. Be that as it 
may, as Salmon puts it (1966, p. 119): 

A hypothesis risks falsification by yielding a prediction that is very improbable unless 
that hypothesis is true. It makes a daring prediction, for it is not likely to come out 
right unless we have hit upon the correct hypothesis. Confirming instances are not 
likely to be forthcoming by sheer chance. 

Whether on a Bayesian or Popperian or commonsense approach, the scientist gains 
respect for a theory when it makes a numerical point prediction or any other kind 
of detailed specification of facts not foreseeable from some alternative theoretical 
construction. Put simply and without reference to technical philosophy of science 
controversies still current today, the general idea is that we are impressed when a 
theory makes detailed predictions that other competing theories don’t, because we 
think that for a theory to have no truth to it and yet make detailed predictions 
about facts would be a strange coincidence 

Some such reasoning must underlie all empirical science, however the philos-
ophers reconstruct it, because otherwise everyone could decide whimsically, apart 
from the strength or weakness of the empirical predictions theories make. Point 
predictions in which a narrow range of values of an observed variable is specified 
(“narrow” means with reference to background knowledge as to the order of 
magnitude of that observational measure’s range of variability, theory aside) are 
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the paradigm case. Other strong corroborators are predictions of rank orders, 
second order differences, function forms (when more complicated than a straight 
line and when the points to be fitted are considerably in excess of the number of 
parameters adjusted), and the like (see Meehl, 1978, pp. 824-825) 

One of the strongest kinds of support for any scientific concept is an inference 
to a numerical point value on the basis of a theoretical model in which the 
numerical value is independently arrived at through manipulations of the observ-
ational facts within a formalism that would have no rationale were it not for the 
conjectured latent causal or structural model of the theory. If we get the same 
answers when each numerical prediction took a risk, this provides very strong 
corroboration. Thus, for instance, physical chemists believe that we know the 
Avogadro constant N, the number of molecules in a gram molecular weight of a 
substance, with exactitude, because there are some 14 non-redundant ways of 
estimating it, ranging from the properties of soap films to purely theoretical 
considerations based upon quantum mechanics. Convergence of numerical point 
estimates is therefore to be sought wherever possible, and taxometric bootstraps 
operations are a good place to do this. 

We have not found it possible to make a clear formal distinction between main 
estimators and consistency tests. A given expression into which numerical values 
can be plugged, or from which numerical values can be estimated when we have 
assigned all but one of the values in the expression, can evidently serve either as a 
main estimator of a latent parameter or as a consistency test. If we have more 
equations than unknowns, we have consistency tests. If we have fewer equations 
than unknowns, we have neither main estimators or a consistency test. If the 
number of equations equals the number of unknowns, then we have estimators but 
the system cannot be inconsistent, because empirically that will never happen. 
These matters are better discussed in the context of presenting the more detailed 
and generalized formalism below 

APPROXIMATIONS AND VERISIMILITUDE 
It is important that the reader understand why we are not much interested in 
developing exact statistical significance tests for consistency formulas. We could 
say gently that it has low priority among the current research tasks of a taxome-
trist. But more honestly, we view it as largely a waste of time, springing from a 
misleading and counterproductive philosophy of science. An exact studentized 
significance test for a consistency test of the taxometric model would serve the 
purpose of refuting the theoretical latent model as taken literally. That is, if the 
consistency test is “failed,” meaning that its numerical values have a low prob-
ability α of occurring on the theoretical hypothesis stated in the formalism, what 
this shows is that the functional relations stated in the formalism, such as complete 
independence, absence of moderator effects, continuity, and so on, are not literally 
true of the state of nature. We do not understand why anyone would want to show 
that, since we already know that in advance. Whether or not this α level is 
achieved will depend jointly, and in a complicated way (which nobody knows how 
to set out rigorously and analytically in the mathematics), upon the degree of 
departure of the state of nature from the idealized model as conceptualized in the 
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embedding text that exposits and interprets the formalism, together with the 
inherent idealizations represented in any formalism, as for example, taking deriva-
tives. In standard analysis differentiation involves assumptions of continuity about 
variables that must of course be discontinuous in the life sciences—certainly when 
we add finite numbers of test items in a psychometric score! The most important 
factor involved here other than the degree of distortion of the truth by the model is 
the power function of the significance test. Nobody could safely contradict the 
following assertion about taxometrics in the behavior sciences: Given a suf-
ficiently large sample, all conceptualizations of latent taxa that cause certain 
indicators to covary in specified ways as stated in the language of differential 
calculus is literally false. Consequently whether or not an investigator succeeds in 
showing it to be literally false depends solely upon the power function, and 
therefore mainly on sample size (see Meehl, 1967, 1978, and more generally, 
Morrison & Henkel, 1970). 

Of course this does not permit the taxometrist to be intellectually irresponsible. 
On the contrary, reflection on the uselessness of significance tests in these con-
texts leads to the desirability of constructing models of approximation theory, an 
important matter that has been insufficiently pursued in the social sciences. The 
problem is never one of literal truth of the conjectural model as stated in the 
formalism and the embedding text, since those are always false, taken literally. 
The problem is the setting up of tolerances in the light of robustness consider-
ations, and as yet only limited inroads have been made into that problem. 

Finally, we do not mistakenly suppose that the neo-Popperian concept “veri-
similitude” is in satisfactory shape in contemporary philosophy of science. But we 
are convinced that some such metatheoretical concept is unavoidable, since all 
theories are false, being idealizations. A theory of schizotypy could have high 
verisimilitude, although it erred in regard to the absence of nuisance variables 
operating within the taxon to generate a certain correlation intrataxonically, 
violating the independence assumption in our derivation above. But that would be 
a small departure from the truth compared to the situation in which there is simply 
no such thing as the schizoid taxon at all, or one in which the indicators, while 
valid for the genetic schizoid taxon, also have high validity for a completely 
environmentally determined phenocopy. Science cannot wait in the development 
of its instruments upon a completely satisfactory philosophical analysis of verisim-
ilitude, any more than historically it has had to wait upon an adequate clarification 
of the notions of induction, proof, or even for that matter the core concept, truth, 
itself. 

A TAXOMETRIC PROBLEM:  
TESTING A THEORY OF SCHIZOPHRENIA 
Our work in taxometrics began with a desire to test a substantive theory of schizo-
phrenia developed by Meehl. This theory conjectures that the genetic predis-
position for schizophrenia is taxonic in nature. After briefly presenting the major 
features of this theory (for a complete description see Meehl, 1962 [and Meehl, 
1990]), we will describe each of three taxometric methods we have developed for 
testing this theory. These taxometric methods are general in that they can be used 
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for testing any theory regarding a conjectured taxon. After discussing the methods, 
we will report the results of applying them in a preliminary’ empirical test of the 
schizophrenia theory. 

Twenty years ago Meehl (1962) proposed a theory of schizophrenia in which 
he hypothesized that only a certain class of people, those with a particular genetic 
constitution, have any liability for schizophrenia. This hypothetical class will be 
referred to here as the “schizoid taxon.” While Meehl’s theory has generated 
considerable interest, there has been little empirical evidence to either corroborate 
or refute it, probably because the taxonomic nature of the theory resulted in 
methodological and statistical problems that could not be adequately handled by 
methods that existed at that time. 

A description of the general nature of methodological and statistical problems 
encountered in testing this theory was given by Meehl (1973a). If, as Meehl 
proposes, the specific etiology of the schizoid taxon (schizoidia) is a single dom-
inant gene, and the only indicators available are highly fallible phenotypic ones, 
how can the probability that a person carries this gene be estimated? Currently 
there is no generally acceptable criterion variable and no definitive diagnostic 
touchstone, sign, symptom, or trait that can be measured reliably. Not all of the 
correlates of schizoidia are sufficiently pathological to be called “symptoms” or 
valid enough to be called “signs” (hence we will use the term “indicator”). 
Thought disorder or “cognitive slippage,” which is viewed by Meehl (following 
Bleuler) as the primary indicator of schizoidia, is not sufficient by itself for 
taxonomic purposes. Some clinical manifestations of cognitive slippage can be 
noted during intensive psychotherapy of psychiatric patients, and can be used as 
inclusion tests for schizoidia, in that their presence is an almost infallible indica-
tion of the presence of this particular pathology. 

Unfortunately, these manifestations are too rare to be used successfully as 
exclusion tests, their absence does not necessarily imply absence of schizoidia. No 
valid psychometric test of cognitive slippage is available—an especially serious 
problem for researchers who would like to study schizoidia as a hypothetical taxon 
that includes both schizophrenics and schizoids (who may never manifest diagnos-
tically psychotic degrees of cognitive slippage). Therefore, we have a perfect 
example of a bootstraps problem (Cronbach & Meehl, 1955), in which we must 
start with a fallible set of indicators of unknown validities and hope to end up with 
accurate estimates of these validities on the basis of some internal statistical 
relationships among them. 

CLUSTER ANALYSIS 
The most popular taxometric methods are currently the cluster analytic ones. As 
discussed above, these methods are intended to solve taxometric problems where 
we do not have a conjectured taxon. According to Blashfield (1976) six “agglom-
erative” cluster methods are the most commonly used. Before using these six 
methods to attempt to detect the schizoid taxon, we decided to subject each to an 
empirical trial where the underlying taxonomy is known. We will describe the 
empirical trials after giving a brief description of these agglomerative cluster 
methods. 
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Although cluster methods were first proposed in the social sciences by Zubin 
(1938) and Tryon (1939), general interest in their use paralleled the development 
of large computers. Now, according to Blashfield (1976), over 100 different 
cluster methods are found in Anderberg (1973), Bailey (1974), and Everitt (1974). 
Even though the cluster methods are most frequently used for generating clusters 
of related variables, they can also be used for generating clusters of similar 
individuals, as would be necessary in searching for a schizoid taxon. 

The agglomerative methods are used in conjunction with a matrix of 
similarity-values for each pair of individuals’ sets of indicator scores. The measure 
of similarity between the two individuals’ indicator scores is usually some kind of 
correlation or distance in the indicator-hyperspace. From the similarity-values, 
clusters can be generated by assigning individuals with similar scores to the same 
cluster. A cluster method is iterative and generates a hierarchical tree, with each 
level of the tree representing a different clustering called a partition. If there are N 
individuals, then the first partition consists of N – 1 clusters, the next of N – 2 
clusters, and so on until the last partition, which consists of two clusters. 

Four of the most popular agglomerative methods are called by Blashfield the 
“single linkage,” “complete linkage,” “average linkage,” and “minimum variance” 
methods. Two other cluster methods, mathematically related to the average 
linkage method, are the “centroid” and “median” methods. It has been shown by 
Lance and Williams (1967) and Wishart (1969) that all six methods can be 
described in terms of the same algorithm or iterative procedure. 

Each of six clustering algorithms can be easily described to give a sense of 
how each works and how it differs from the others. For example, in the single 
linkage method, each member of a cluster is more similar to at least one member 
of that cluster than it is to any member of any other cluster. In the complete 
linkage method, each member of a cluster is more similar to the most dissimilar 
member of the same cluster than it is to the most dissimilar member of any other 
cluster In the average linkage method, each member of a cluster has a greater 
average similarity with the other members of the same cluster than it does with the 
members of any other cluster. In the centroid method the members of a cluster 
have a greater similarity to the centroid of the cluster than they do to the centroid 
of any other cluster. The centroid of a cluster is the vector of indicator means 
calculated across the members of the cluster. The median method is similar to the 
centroid method except that the median of the cluster members is used in place of 
the centroid. In the minimum variance method, the clusters are formed so that the 
sum of the squared differences in the similarity-measures across pairs of 
individuals of the cluster is minimal. 

Detection of the Biological Sexes:  
An Empirical Trial of a Taxometric Method 
We have described a theory of schizoidia, taxonomic in nature, which requires an 
appropriate taxometric method in order to test it. Because cluster analysis is the 
best known taxometric method, we considered using it. However, before using a 
cluster method for our purpose, we need to be confident that it will usually 
produce “accurate” clusters, or that it will rarely produce totally inaccurate or 
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“spurious” ones that would be mistaken for “real” clusters. For our purposes a set 
of clusters is “accurate” or has sufficient verisimilitude (Popper, 1962), if it 
corresponds closely enough to an actual underlying taxonomy of real empirical 
classes; if the set of clusters does not have such a degree of verisimilitude, it will 
be said to be spurious. We can perform a simple empirical trial to obtain an idea of 
the accuracy of some of the cluster methods, and other taxometric methods we will 
describe, when used to detect real empirical classes such as those considered when 
testing a typical taxonomic theory in the social sciences. 

In one study (Golden & Meehl, 1981) we evaluated six of the more popular 
cluster methods as to their accuracy in testing a pseudo-taxonomic theory, one that 
we knew in advance to be correct. In doing this, we attempted to determine which, 
if any, of these cluster methods are satisfactory for solving the pseudo-problem of 
detecting the taxonomic variable of biological sex when sex-discriminant 
Minnesota Multiphasic Personality Inventory (MMPI) items are used as indicators. 
Taxometric methods that cannot pass this empirical trial are unlikely to be useful 
in detecting, as but one example, the schizoid taxon with (other) MMPI items. In 
this approach to evaluating cluster methods we determine how well each method 
detects a known taxon. General use of this approach is difficult in fields such as 
personality and psychopathology, since there are few known taxa. Fortunately, at 
least one physical taxon, biological sex, is virtually perfect on the criterion side. 
Also it is reassuring to note that a scale of MMPI masculine-feminine interest 
items produces bimodality for a large mixed sample with equal numbers of males 
and females. We think it likely that many taxa in the social sciences have too 
much overlap to generate bimodality when psychometric indicators such as MMPI 
are used. If bimodality obtains, it is generally because the latent taxonic class 
distributions on the indicator-scale have very little overlap. For example, if the two 
taxonic class base rates are equal, and the two taxonic class distributions are 
normal in shape, then bimodality is only discernible when the two means are more 
than two within-taxon class sigma-units apart (Murphy, 1964). 

The MMPI sex discriminant items are described in some detail here, since 
these items were also used to test each of our own taxometric models to be 
described below. 

The MMPI item-indicators were chosen by comparing two samples of males 
and females on each of the 550 MMPI items. These two samples consisted of 430 
male and 675 female adult psychiatric patients in the University of Minnesota 
Hospitals. The items were scored 1 for a “female” response and 0 for a “male” 
response, with “female” and “male” responses determined both by comparing the 
response proportions of these same male and female samples and by considering 
the item content (i.e., face validity). The two methods agree perfectly. It was found 
that 49 items discriminated between the two samples to the extent that the 
difference in the proportions that scored a 1 was .10 or more. This difference in 
proportions will be referred to as the “validity” of the item. Of these 49 items, 18 
were found to have validities of .30 or more and will be referred to as the “highly 
discriminant” items. Examples of the highly discriminant items are given below. 
The letter in parenthesis indicates that a response of true (T) or a response of false 
(F) is scored as 1; otherwise the response is scored as 0. “I am not afraid of mice” 
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(F), “I used to like hopscotch” (T), “I used to keep a diary” (T), “I very much like 
hunting” (F), “I like collecting flowers or growing houseplants” (T), “I would like 
to be a nurse” (T). The 12 items found to have validities between .20 and .30 are 
referred to as the “moderately discriminant” items. Examples of moderately 
discriminant items are: “I like poetry” (T), “I like to cook” (T), “I would like to be 
a soldier” (F), “If I were an artist, I would like to draw flowers” (T), “I have no 
fear of spiders” (F). The 21 items found to have validities between .10 and .20 are 
referred to as the “weakly discriminant” items. Examples of weakly discriminant 
items are: “I gossip a little at times (T), “Sometimes when I am not feeling well I 
am cross” (T), “I would like to be a florist” (T), “At times I feel like swearing” 
(F), “I am certainly lacking in self-confidence” (T), “I am easily downed in an 
argument” (T), “I like science” (F). Finally, 26 items (scored arbitrarily with 
regard to sex direction) were selected at random from the remaining 501 items in 
the MMPI inventory with validity coefficients between –.10 and .10, and are 
referred to as “nondiscriminant” items. Examples of very weakly or, as we call 
them, nondiscriminant items are: “I have several times given up doing a thing 
because I thought too little of my ability” (T), “I have often met people who were 
supposed to be experts who were no better than I” (F), “At times I have worn 
myself out by undertaking too much” (F), “My plans have frequently seemed so 
full of difficulties that I have had to give them up” (T). 

Objection has been made that this task is difficult or impossible, because 
MMPI items are too many steps removed from the sex-determining genome. One 
simply cannot expect, it is said, that verbal self-reports of interests, attitudes, 
feelings, and the like will possess sufficiently high construct validity vis-à-vis the 
XX genotype to permit a bootstraps taxometric identification of the biological 
taxon, let alone a highly accurate sorting of individual subjects into those taxa by 
the use of such fallible bootstrapped indicators. 

The answer to this criticism is that we know as an empirical fact that it is 
possible to do so, as the authors of the MMPI did when they had available an 
external criterion available for empirical keying. Even the old MMPI Mf scale 
itself achieves between an 85 and 90% accuracy in identifying biological sex. This 
suffices to show that the net attenuated construct validity of these kinds of verbal 
items is not too poor for the sex identification task we set to it. 

We will also present evidence that each of our taxometric methods can be 
applied in a bootstraps fashion, without knowledge of the criterion membership of 
the individuals, to infer the biological sex taxonicity, estimate the taxa base rates 
accurately, and classify individuals with an accuracy of 85 to 90%. Thus we can 
bootstrap this taxonomy using MMPI items and get a true validity that compares 
favorably with that achieved by Hathaway and McKinley employing the objective 
sex membership dichotomy for criterion keying. For further analysis of the 
methodological fairness of the empirical trial, see Golden and Meehl (1981). 

Our position on the fairness of this empirical trial is that the conjecture that a 
certain taxometric method will usually enable one to detect a taxon, to find the 
strong items, and to assign weights to them for classifying individuals into the 
detected taxon or out of it, is strongly discorroborated when the method fails at its 
task in a context in which the dichotomy is known to exist and the fallible indica-
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tors available to the taxometric method are known to be sufficiently valid so that 
when put together, even by a crude item analytic and unweighted procedure, they 
are highly accurate. 

The Results of the Empirical Trial of the Cluster Methods 
The accuracy with which each of six cluster methods detected the biological sex 
taxonomy was determined by observing how accurately a mixed-sex sample of 
individuals was classified according to biological sex. The last partition of two 
clusters was used; that with the most females was identified as the female cluster 
and the other as the male cluster. 

For each trial, a mixed sample of size 200 consisting of 100 males and 100 
females was analyzed. Two hundred is a common size for cluster analysis studies 
and was the maximum that the available computer program could accommodate. 
A second mixed sample of the same size and mixture was used for replication 
trials. 

The six cluster methods were studied using four different sets of MMPI 
indicator-items for each of the two samples; Set I consisted of the 20 most highly 
discriminant items, Set II consisted of the 30 most highly discriminant items, Set 
III consisted of the 50 most highly discriminant items, and Set IV of those items in 
Set III plus 25 nondiscriminant or “garbage” items. Set IV provides the strongest 
test of the methods and is closest to the actual situation in much taxometric 
research. 

Three of the methods (single linkage, centroid, and median) did not provide 
acceptable values for the female or male base rates or an adequate hit rate in 
classifying as to biological sex for any of the four sets of indicator items. In each 
case the absolute error in the estimate of the male or female base rate exceeded 
.15, and/or the overall correct classification rate was less than .65 where .50 is the 
chance rate. In contrast, the results of the other three methods (complete linkage, 
average linkage, and minimum variance) were much better. For the latter three 
methods the estimate of female or male base rate was between .40 and .60, and the 
correct classification rate exceeded .75 for 13 of a total of 24 trial samples. 

Whether one views such results as encouraging or otherwise will depend on 
the research aim and (like it or not) one’s philosophy of science. The “professional 
taxometrician,” a typical member of the Classification Society, might be pleased 
to find three of the popular methods doing as well as they did here; or he or she 
might not care one way or the other, especially if he or she is philosophically a 
conventionalist or fictionist, for whom there are no “right answers” to a taxonomic 
problem. 

A physician, psychopathologist, or behavior geneticist should, we think, be 
less than enthusiastic about findings such as these; and so such workers have been, 
almost uniformly. Only a tiny minority, surely less than 1%, of clinical psychol-
ogists or psychiatrists rely on formal cluster algorithms for help in solving their 
problems, whether theoretical or clinical. Should we expect them to? Suppose a 
psychoclinician employed by court services wants to find out whether there are 
different “types” of sex offenders; how could he or she rationally decide which of 
the six most popular cluster methods to use in answering such a general question? 
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Three of them failed to achieve success, by very tolerant criteria, in such a simple, 
easy task as “telling the girls from the boys.” They couldn’t manage that on any of 
their eight trials (Golden & Meehl 1981, Table 3). Even the three most accurate 
were unimpressive as scientific detection instruments would normally be judged. 
Thus the very best method (average linkage) yielded tolerable results in six trials 
but failed in two. Would we want to trust such methods in taxonomizing criminals, 
psychotic patients, school behavior problems, or genetic mental deficiencies? 
Remember, this is not six out of eight “hits” in diagnosing individuals—a validity 
quite useful for some purposes. Rather the best among the six favorite cluster 
methods gave only six in eight accurate nomothetic (generic, conceptual) results, 
in detecting the taxon’s existence and estimating its base rate. 

No one even moderately familiar with the field will find these poor to 
mediocre results surprising. It is well known that: (1) different cluster algorithms 
do not tend, by and large, to agree very well with one another; (2) they sometimes 
detect the taxa generally recognized by competent scholars in a substantive field 
and sometimes do not; when not, (3) there are no objective (or even generally 
accepted) criteria telling us which classification to trust; and (4) there are no 
persuasive theoretical considerations for preferring one method over another. 

As Meehl (1979, p. 567) points out, it is a striking historical fact that not one 
single entity in psychopathology, neurology, or medical genetics owes its initial 
discovery to formal cluster analytic methods. He conjectures eight reasons (pp. 
571-572) why we might expect this to be so, for which the reader is referred to 
that paper. See also the critical discussion by the statistician Cormack (1971), and 
the excellent expositions by Blashfield (1976, 1978), Blashfield and Aldenderfer 
(1978), and Skinner (1981). 

We have not wished to belabor the point that formal cluster algorithms, or at 
least the received ones in favorite use, have yet to prove their value for the 
psychoclinician’s tasks. It is our own conjecture, which we venture to suggest is 
rather well corroborated by the evidence to date, that what we have labeled above 
the “Type II” taxometric problem does not admit of a general solution. We think 
that there are strong epistemological, mathematical, and domain-substantive 
(structural, causal) reasons why this is so. That is our justification (other than 
personal interest and the Handbook editors’ permission) for focusing this chapter 
mainly on methodological clarification of the taxometric problem, illustrating that 
by exposition of our own methods, these latter being solutions—strong and test-
able ones, as we believe—to taxometric problems of Type III: conjectured latent 
taxon. It is our conviction that this third kind of problem is by far the commonest, 
despite its almost complete neglect by taxometricians. So we do not apologize for 
emphasizing strong Popperian methods in preference to methods of doubtful 
empirical utility and lacking in coherent theoretical rationale. Readers who remain 
optimistic about Type II cluster methods can readily find them explained in the 
excellent standard treatises by Hartigan (1975) and Sneath and Sokal (1973), or 
the brief summary exposition of Sokal (1974). 

THE TAXOMETRIC MODELS 

It is desirable to develop a taxometric method so that we know the conditions for 
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which it will work perfectly. Then we can infer how much the actual latent situa-
tion departs from these ideal conditions or “assumptions” of the method and check 
that this departure is not so great that we are likely to be misled by the parameter 
estimates. If we do happen to conclude that the departure is too great, we can 
choose to disregard the particular results. The key assumption we used in each of 
the models described below is that indicators are uncorrelated within the taxon and 
within the complement of the taxon, referred to below as the “taxon complement” 
or simply the “complement.” 

We hypothesize that each individual is either a member of the taxon or a 
member of the taxon complement. In other literature on taxometric models the 
taxon and the taxon complement are referred to as “latent classes” (e.g., Clogg, 
1977; Goodman, 1975; Green, 1952; Lazarsfeld & Henry, 1968; and Torgerson, 
1958). We have emphasized that the taxonomic class should comprise an actual 
empirical taxon, that the classification “carves nature at its joints.” Since our 
purpose is to detect a real, empirical taxonicity, it is not sufficient, for example, 
merely to produce classifications that optimize a statistical property such as a 
measure of intraclass homogeneity. We view such a procedure as desirable only to 
the extent that it helps in detecting real, empirical taxonomies (Meehl, 1979). 
Because of our emphasis on the empirical nature of the conjectured taxonomic 
classes, we refer to them as the “taxon” and the “taxon complement” or in general 
as “taxonomic classes” (for further discussion see Meehl, 1979). 

We begin the description of the taxometric models by considering an ideal 
taxonomic latent situation. There exists a taxonomic class or taxon of individuals 
with the disease, disorder, or syndrome (denoted by subscript t) and a complemen-
tary taxonomic class or taxon complement of individuals without the disorder 
(denoted by subscript c). Let P be the base rate of the taxon and Q = 1 – P be that 
of the complement. Suppose we have several dichotomous indicators that discrim-
inate between these two taxonomic classes. 

Let ptk be the probability that an individual in the taxon has a positive response 
to the kth indicator (the “valid positive” rate) and pck be that for an individual in 
the complement (the “false positive” rate). Responses are scored as 1 if positive 
(i.e., deviant, pathological, indicative of the disorder), otherwise as 0. The direc-
tion of scoring is determined a priori by empirical or theoretical considerations, 
but checked empirically by the taxometric method. 

Each of the taxometric models we have developed can be derived from the 
auxiliary conjecture that each pair of indicators (or in the case of the normal 
model, each pair of components of the indicator, such as items comprising an 
indicator-scale) are independent within the taxon and within the taxon comple-
ment. It is by elimination of the intrataxonomic class covariances (correlations 
between indicators) that each model becomes overdetermined so we can solve for 
unique values of the remaining latent parameters such as the taxonomic class base 
rates and the indicator valid and false positive rates. We trust these parameter 
estimates only if the auxiliary conjecture specifying independence between 
indicators within each taxometric class is inferred to be sufficiently close to the 
actual situation. How we make such inferences is discussed in detail below 
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CLASSIFICATION OF INDIVIDUALS BY BAYES’ THEOREM 
When estimates of the latent parameters have been obtained taxometrically, one 
can then classify individuals, at least fallibly. We use Bayes’ Theorem to obtain 
for each individual an estimate of the model-based probability that the individual 
is in the taxon. Suppose that a particular individual has a set of indicator scores 
 ( !x) = (x1, x2 , x3,… xm ) . If each of these scores were = 1 (code for a positive 
response), then by Bayes’ Theorem the probability of being in the taxon is 
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We can use the model-based estimates of the parameters, P, pti, and pci in Bayes’ 
Theorem to obtain an estimate of the probability of an individual being in the 
taxon. For any set of indicator values (a vector of ones and zeros) the probability 
of being in the taxon can be obtained from 
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qti = 1 – pti and qci = 1 – pci and we use estimated parameter values. For each 
individual we can calculate  p(t !x)  and then apply the following classification rule: 
If  p(t !x)  ≥ a, classify as a taxon member; if  p(t !x)  < a, classify as a complement 
member. It can be shown that the cutting score a is set at .50 to maximize the total 
number of correct classifications. The use of Bayes’ Theorem also requires the 
assumption that the indicators are independent within each taxonomic class. The 
error in this “probability score” caused by assumption departure depends on the 
robustness of the models, a matter that will be discussed below. 

AN HEURISTIC METHOD 
Indicators that discriminate between the two taxonomic classes and are approx-
imately uncorrelated within each should also behave “consistently” with one 
another in various ways. For example, if different indicators can be used to obtain 
multiple estimates of some latent parameter, then these estimates should be 
sufficiently similar to one another. If the estimates are inconsistent, we know that 
(for sufficiently large samples) it is likely that one or more of the indicators do not 
conform to the assumptions underlying the model. Such internal consistency 
criteria, when used to check the assumptions of a model, can be regarded as statis-
tical tests, christened “consistency tests” by Meehl (1965, 1968, 1973, 1978). 
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A series of these consistency tests can be used in a consecutive hurdle fashion; 
when an indicator fails a test, it is removed and not used in the remaining calcu-
lations. This series of tests comprises a taxometric method that we call the 
“consistency hurdles” method. The method is iterative, in that tests are repeatedly 
applied to the indicators, those failing a test being removed until none of the 
indicators remaining fail any of the tests. The computational procedures and 
derivations are partially described below. More mathematical details of the deriva-
tions are provided in Golden, Tyan, and Meehl (1974a), Golden and Meehl (1979), 
and in Meehl (1968). Here we describe in detail the first of four such tests 
comprising the consistency hurdles method. 

Let yi = (i = 1, 2, … n) denote a dichotomous indicator scored 1 (taxon direc-
tion) or 0 (taxon complement direction). Let xi denote the scale or “key” formed 
by summing the scores from the n – 1 other indicators (all except indicator yi). 

 xi = yj
j≠1

n

∑ , (j ≠ i) (8) 

For each “output” indicator yi and associated “input” scale xi, we can create the 
function 

 di (c) = ai (c)− bi (c)  (9) 

where c is a score on xi, ai(c) is the mean of the yi scores for those individuals with 
scores above c on xi, and bi(c) is the corresponding mean score for those 
individuals below c. 

The maximum value of di(c) over all of the c-values (the possible range is 0 to 
n – 1) tells us something about the underlying latent situation: If each pair of 
indicators in a set are correlated mainly because each indicator discriminates the 
two taxonomic classes, then a very poor choice of c should in general reduce the 
statistical tendency of xi and yi to go together. For example, if a neurologist were 
dealing with the clinical diagnosis of meningitis versus nonmeningitis, and two 
indicators under consideration, temperature elevation and marked pain on antero-
flexion of the neck, are clinical signs of meningitis, then the two signs should 
correlate significantly in a mixed sample of meningitic and nonmeningitic persons. 
But if the neurologist were so unwise as to have chosen a very low cutting point 
on these two indicators—such as temperature above 99.0° and any sign or 
complaint, however slight, of stiff neck or reluctance to flex the neck—then 
considerable numbers of patients without meningitis but with other milder infec-
tious conditions, including the common cold, would show one or both of these 
“signs.” Two untoward results would be expected; first, the correlation between 
the two clinical indicators would be reduced, and second, the identification of the 
taxonomic class of interest (meningitis) would be poorer. 

Monte Carlo studies of the di functions for a wide variety of artificial data 
samples have indicated that its maximum value over all values of c must be at 
least .10 for the taxometric method to give sufficiently accurate results. Since in 
practice the estimate of this maximum value can be misleading due to sampling 
error, especially for samples of sizes less than 500, it is best to smooth the di curve 
by a method such as moving averages. Based upon these smoothed values, the first 
consistency test requires that max [di(c)] ≥ .10. After the deletion of those k 
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indicators that fail this requirement, the xi keys are then recalculated, using the 
remaining set of n – k – 1 indicators and the process is repeated until no items are 
deleted. The remaining hurdles of the method consist of checking that the 
indicators, when used in the output role, produce consistent estimates of the 
hitmax cut on the input scale, are sufficiently discriminating between the taxon 
and complement, and produce sufficiently consistent estimates of the taxonomic 
class base rates. The indicator positive rates for the taxon and the complement 
(i.e., the valid positive and valid negative rates, respectively) can be estimated by 
the use of the tails of the distribution on the input scale. That is, the method 
provides an estimate of the taxon base rate and the valid and false positive rates 
for each of the remaining indicators. The above description of the method is very 
brief; for a more complete description see Golden and Meehl (1979). 

If the results of these consistency tests lead to acceptance of the latent model 
as an adequate approximation of the state of nature, then Bayes’ Theorem can be 
used to calculate the probability of each individual’s belonging to the taxon. 

An empirical test in which the MMPI items previously described were used to 
identify the sexes suggests how well the method can work with real data. For 
example, the method was applied to the total 75 items (the toughest test used in 
testing the cluster methods) for a sample consisting of 100 males and 100 females. 
The estimates of the indicator taxonomic class positive rates and the male and 
female base rate estimates for the nine items selected by the method are presented 
in Table 5.1. As one can see, even with a sample of this small size the item 
positive rates were estimated quite accurately, as was the base rate (.54 vs. .50). 
The results of other such trials of this method are given in Golden and Meehl 
(1979) along with the results of applying this method to the schizoid taxon 
problem. 

Table 5.1. The Estimates of the Male and Female Indicator Positive Rates and the Female 
Base Rate for 75-Item Male-Female Trial of the Consistency Hurdles Method (N = 200) 

  Males    Females  Estimate of 
female base 

rate 
  True   True  

Item Estimate value Error  Estimate value Error 
1 .05 .08 –.03  .66 .64 .02 .53 
2 .09 .10 –.01  .37 .30 .07 .57 
3 .41 .50 –.09  .87 .90 –.03 .55 
4 .42 .44 –.02  .84 .74 .10 .46 
5 .46 .40 .06  .91 .84 .07 .48 
6 .25 .36 –.11  .87 .78 .09 .54 
7 .05 .14 –.09  .54 .52 .02 .56 
8 .08 .08 .00  .47 .38 .09 .55 
9 .30  .36 –.06  .80 .84 –.04 .57  
      Average: .54  
      True value: .50 
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THE MAXCOV-HITMAX MODEL 
This model requires the use of three or more “graded” indicators rather than 
several dichotomous indicators. The indicators may be, for example, MMPI 
“keys” or scales formed by summing 20 or so MMPI items, each scored 1 and 0 as 
done previously. 

We conjecture that we have a set of three or more indicator-scales, each of 
which has some validity for discriminating between the two taxonomic-classes, 
but which are uncorrelated with one another within each taxonomic-class. We 
need not make further assumptions that the frequency distribution for each indi-
cator is unimodal within taxonomic-class, nor do we need further assumptions 
regarding the distributions, such as normality, symmetry, homogeneity of 
variance, or the like. 

We will use the following notation. 
W, X, Y:   indicators and associated random variables 
N:   compound sample size 
W0:   an arbitrary but fixed interval of indicator W 
P:   base rate of the taxon 
Q = 1 – P:   base rate of the complement 
p(w0):   proportion of those in the w0 interval who are in the taxon 
µ(X):   compound population mean for indicator X 
µt(X):   taxon population mean for indicator X 
µc(X):   complement population mean for indicator X 
σ2(X):   compound population variance for indicator X 
σt

2(X):   taxon population variance for indicator X 
σc

2(X) :   complement population variance for indicator X 
σ(X,Y):   compound covariance for indicators X and Y 
σt(X,Y):   taxon covariance for indicators X and Y 
σc(X,Y):   complement covariance for indicators X and Y 
σ(X,Y|w0)   compound population covariance for indicators X and Y  

for subpopulation where W = w0 
σt(X,Y|w0):   taxon population covariance for indicators X and Y  

for subpopulation where W = w0 
σc(X,Y|w0):   complement population covariance for indicators X and Y  

for subpopulation where W = w0 
A carat above any of these parameters will be used to denote an estimate of the 
parameter. 

Let W, X, and Y be three such indicator-scales, so that W is the “input” 
indicator and X and Y are the “output” indicators. The (latent) taxonomic class 
distributions on the input indicator are estimated by using manifest relationships 
between the two output variables. 

As before, the input-output terminology is used merely to describe statistical 



 41 

procedures; nothing about causal relationships is implied. The taxon is the taxonic 
class with the higher scores on each of the input indicators and the complement 
class is that with the lower scores. 

The covariance between X and Y for any interval w0 of indicator W is 

 
σ (X,Y |w0 ) = p(w0 )σ t (X,Y |w0 )+ q(w0 )σ c (X,Y |w0 )

+ p(w0 )q(w0 )v(X |w0 )v(Y |w0 )
  (10) 

where p(w0) is the proportion of individuals in w0 interval that are members of the 
taxon, q(w0) is the corresponding complement proportion, so that p(w0) + q(w0) 
= 1, σt(X,Y|w0) is the latent covariance between X and Y for the taxon in interval 
w0, σc(X,Y|w0) is the corresponding complement covariance, v(X|w0) is the mean 
on X for the taxon less that for the complement in interval w0, and v(Y|w0) is the 
corresponding mean difference on Y. Letter v is chosen for “[crude] latent 
validity.” 

Earlier in this chapter we showed that a procedure for estimating the latent 
parameters can be derived from the following assumptions: 

 A1:  σt(X,Y|w0) = σc(X,Y|w0) = 0 (11) 

for each w0 interval, and 
 A2:   σt(X,Y) = σc(X,Y) = 0 . (12) 

We studied by Monte Carlo method the robustness and accuracy of the 
MAXCOV-HITMAX model with respect to these assumptions. Artificial data 
were generated to produce multivariate normal distributions within each of the two 
taxonomic classes, because data of this kind are easily generated and can serve the 
purpose of an exploratory Monte Carlo study (for method see Golden et al., 
1974c). Certain parameters of the latent situation were fixed because of constraints 
and cost. For each of the artificial data samples three indicators were used in the 
three different input-output role combinations. The values of the indicator taxo-
nomic class means and standard deviations were assigned the same values for each 
of the three indicators, and each artificial number was rounded off to the nearest 
integer. For each set of latent parameter values (taxonic base rates, means, and 
sigmas on each indicator) 25 independent random samples were generated, and 
each was analyzed by the MAXCOV-HITMAX method. 

To generate an artificial sample we specified: (1) the parameters of the 
multivariate normal distribution for the population taxon and complement; and (2) 
the taxonic base rates. The parameters of a multivariate normal distribution are the 
three indicator means and standard deviations and the 3

2( ) = 3 covariances or 

correlations between the indicators taken pairwise (Lindgren, 1962). The 
MAXCOV-HITMAX method is based on the assumption that these correlations 
are zero for each taxonomic class, and we can test the method for robustness with 
respect to this assumption by assigning nonzero values to these population 
correlations. 

The various sets of parameter values are described in Table 5.2 (by columns 
labeled N, P, µc, µt, σc and σt). Twenty-five random samples were generated for 
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each of the 24 latent conditions. In summarizing the results of applying the 
MAXCOV method to the 24 × 25 = 600 random samples, parameter estimates 
were regarded as accurate enough for our research purposes if the base rate and hit 
rate estimates were within .10 of the true (latent) values, and if the taxonomic class 
mean and sigma estimates were within one interval (usually about ½ of a 
taxonomic class standard deviation) of the true values. 

Table 5.2. Population Parameter Values for the Monte Carlo Trials of the MAXCOV-
HITMAX Method 

Set Variable N P µc µt σc σt v σt /σc ρ  #F 

1.1 N 1000 .5 8 12 2 2 2 1 0 * 0 
1.2  800 .5 8 12 2 2 2 1 0 * 0 
1.3  600 .5 8 12 2 2 2 1 0 * 0 
1.4  400 .5 8 12 2 2 2 1 0 * 0 
2.1 P 1000 .6 8 12 2 2 2 1 0 * 3 
2.2  1000 .7 8 12 2 2 2 1 0 * 2 
2.3  1000 .8 8 12 2 2 2 1 0 * 8 
2.4  1000 .9 8 12 2 2 2 1 0  0 
3.1 v 1000 .5 9 12 2 2 1.5 1 0 * 0 
3.2  1000 .5 10 12 2 2 1 1 0 * 15 
3.3  1000 .5 11 12 2 2 0.5 1 0  0 
3.4  1000 .5 12 12 2 2 0 1 0  0 
4.1 σt /σc 1000 .5 8 12 1.9 2.1 2 1.1 0 * 0 
4.2  1000 .5 8 12 1.7 2.3 2 1.3 0 * 0 
4.3  1000 .5 8 12 1.5 2.5 2 1.7 0 * 0 
4.4  1000 .5 8 12 1 3 2 3 0  0 
5.1 p 1000 .5 8 12 2 2 2 1 .1 * 0 
5.2  1000 .5 8 12 2 2 2 1 .3 * 0 
5.3  1000 .5 8 12 2 2 2 1 .5 * 8 
5.4  1000 .5 8 12 2 2 2 1 .8 * 0 
          ρc /ρt    
6.1 N 1000 .8 8 12 2 2 2 1 .5/.125  0 
6.2 ρc /ρt = 4 800 .8 8 12 2 2 2 1 .5/.125  0 
6.3  600 .8 8 12 2 2 2 1 .5/.125  0 
6.4  400 .8 8 12 2 2 2 1 .5/.125  0 

KEY N:   sample size 
 P:   base rate of the taxon 
 µt:   mean of the taxon on each indicator 
 µc:   mean of the taxon complement on each indicator 
 σt:   standard deviation of the taxon on each indicator 
 σc:   standard deviation of the complement on each indicator 
 v:   (µt – µc)/σ where σ = (σt + σc)/2 
 ρ:   correlation between indicators within the taxon and the complement 
 *:   parameter estimates are always or nearly always accurate 
 #F:   number of failures of consistency tests in 25 samples 
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We now describe the results. First, different sample sizes (N) of 1000, 800, 
600, 400, for σc

2 = σt
2 = σ2, a difference between the taxonomic class means of 2σ, 

P = .5, and zero taxonomic class correlations, each gave average errors of .01 
(2%) in the estimation of P, and less than σ/4 (½ of an indicator interval) in the 
estimation of the taxonomic class means and standard deviations. Second, 
different base rates of .6, .7, .8, and .9 for N = 1000, σt = σc, taxonomic class mean 
separations of 2σ, and zero taxonomic class correlations, gave corresponding 
average errors of .03, .04, .02, and .60 in the estimation of the base rate and 
average errors of less than 3 σ/8, σ/2, σ, and 3σ/2 in the estimation of the 
taxonomic class means and standard deviations. Third, different taxonomic class 
mean separations of 3σ/2, σ, and σ/2, for N = 1000, σt = σc, P = .5 and zero 
taxonomic class correlations, gave average errors of .01 in the estimation of P and 
less than σ/4 in the estimation of the taxonomic class means and standard 
deviations. Fourth, different standard deviation ratios (σt /σc) of 11/10, 4/3, 5/3, 
and 3 for N = 1000, taxonomic class mean separations of ½(σt + σc), P = .5 and 
zero taxonomic class correlations, gave average errors of .02, .03, .08, and .14 in 
the estimation of P and average errors less than σ/4, σ/4, σ/4, σ/2 in the estimation 
of the taxonomic class means and standard deviations. Fifth, different taxonomic 
class correlations of .1, .3, .5. and .8 for N = 1000, taxonomic class mean 
separations of 2σ, σt = σc = σ, and P = .5 gave average errors of .01 in the 
estimation of P and σ/4, σ/4, σ/2, and σ, in the estimation of the taxonomic class 
means and standard deviations. 

To summarize, the MAXCOV-HITMAX model requires the following condi-
tions in order to provide base rates accurate to within .10 and taxonomic class 
means and standard deviations accurate to within σ/2 (an indicator interval): 

1. Base rates not disproportionate more than (.2/.8). 
2. Separation of means ≥ σ. 
3. Standard deviation ratio < 1.7. 
4. Taxonomic class correlations ≤ .5. 
5. The difference between the two corresponding taxonomic  

class correlations < .4. 
We developed four consistency tests for checking the auxiliary conjectures of 

the MAXCOV model. This is the analytical basis of one of these tests: 
The covariance mixture formula when applied to the taxon and the 

complement is 
 σ(X, Y) = P σt(X, Y) + Q σc(X, Y) + PQ v(X) v(Y)  (13) 
where σ(X, Y) = manifest covariance for the mixed or compound 

population 
σt(X, Y) = latent covariance for the taxon 

σc(X, Y) = latent covariance for the complement 
P, Q = base rates of taxon and complement 
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v(X) = difference in means of taxon and complement 
on indicator x 

v(Y) = difference in means of taxon and complement 
on indicator y 

If the assumptions of the model were perfectly met, then σt(X,Y) = σc(X,Y) = 0 and 
σ(X,Y) – PQ v(X) v(Y) = 0. 

We next confront the question “What are the tolerance limits for the quantity 
σ̂ X,Y( ) – P̂Q̂ v̂ X( ) v̂ Y( ) ?” The carat denotes a model-based parameter estimate. 
The parameter estimates are erroneous because of sampling error and departure 
from the model assumptions. 

Consider the population parameter 
 T =σ (X,Y )− PQ v(X) v(Y )   (14) 

which can be also written as 
 T = Pσ t (X,Y )+Qσ c (X,Y )   (15) 

Since the taxonomic class covariances are generally positive, T is generally 
positive. It will be useful to consider the differential of T, which is 

 dT = ∂T
∂σ (x, y)

dσ (x, y)+ ∂T
∂P

dP + ∂T
∂v(x)

dv(x)+ ∂T
∂v(y)

dv(y)   (16) 

We can interpret this result by considering dσ(X,Y) as the error in σ̂ X,Y( )  due to 
sampling, dP as the error in P̂  due to sampling and assumption departure, and 
likewise for dv(X) and dv(Y). It follows then that dT = T̂ −T  is the resulting or 
propagated error in T caused by those errors in σ̂ X,Y( ) , P̂ , v̂ X( )  and  !v(Y ) . The 
above equation for the differential of T is approximately true for small errors, the 
approximation being better the smaller the errors. The partial derivatives obtained 
by differentiation of the above covariance mixture equation are 

 ∂T
∂σ (X,Y )

= 1   (17) 

 ∂T
∂P

= (2P −1)v(X)v(Y )   (18) 

 ∂T
∂v(X)

= −PQ v(Y )   (19) 

 ∂T
∂v(Y )

= −PQ v(X)   (20) 
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Substituting parameter estimates into the expressions for these partial derivatives 
gives 

 

 

T̂ ! σ̂ (X,Y )−σ (X,Y )+

(2P̂ −1)v̂(X)v̂(Y )(P̂ − P)−

P̂Q̂v̂(Y ) v̂(X)− v(X)( )−
P̂Q̂v̂(X) v̂(Y )− v(Y )( )

  (21) 

We can proceed by specifying an upper limit for the absolute value of the 
difference in the estimate and actual value for each of 

 σ(X,Y), P, v(X), and v(Y). 

Specifically, let us require that 

(a) P̂ − P ≤ .10   

(b) v̂(X)− v(X) ≤ 12σ a (X)   (22) 

(c) v̂(Y )− v(Y ) ≤ 12σ a (Y )  

(where σa(X) = ½ [σt(X) + σc(X)] and σa(Y) = ½ [σt(Y) + σc(Y)] ). 

Finally, it is very likely that 

(d) σ̂ (X,Y )−σ (X,Y ) ≤ 4σ (X)σ (Y )
N

  (23) 

Since the MAXCOV-HITMAX method usually produces taxonomic class 
standard deviation estimates that tend to be too large, we have 

 

T̂ ≤ 4σ̂ (X)σ̂ (Y )
N

+ 2P −1 v̂(X)v̂(Y )(.10)

+P̂Q̂v̂(Y ) 12σ̂ a (X)( )
+P̂Q̂v̂(X) 12σ̂ a (Y )( )

  (24) 

as our final result. The consistency test now is to compare the quantity  

 T̂ = σ̂ (X,Y )− P̂Q̂v̂(X)v̂(Y )   (25) 

with the limit given in the above inequality. If the inequality is satisfied, the test is 
passed by our data set; if not, it is failed. This consistency test turns out to be a 
sensitive detector of situations in which the intrataxonomic class correlations are 
too large and result in inaccurate parameter estimates (sets 5 and 6 of Table 5.2). 
This sensitivity of the test is reasonable, since its derivation rests squarely on the 
assumption that these correlations are zero. 

In a similar manner we developed three other tests designed to detect other 
kinds of assumption departure (Golden, Tyan, & Meehl, 1974b). 
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The most significant result of the Monte Carlo study was that every sample 
that produced inadequate parameter estimates failed at least one of the four con-
sistency tests and was therefore detectable as untrustworthy (see Table 5.3). Only 
in set 3.2, where the separation between the taxonic means was small (σ), were the 
parameter estimates acceptable and incorrectly rejected. But these samples pro-
duced only marginally acceptable parameter estimates. So the consistency tests 
worked nearly perfectly for these artificial data samples. The few instances (6%) 
in which the consistency tests failed were “conservative” in that accurate results 
were needlessly rejected. 

Table 5.3. Summary of Consistency Test Results for Monte 
Carlo Study of the MAXCOV-HITMAX Method 

  Consistency test “advice”  

  Accept 
sample 

Reject  
sample 

 

Sample’s 
actual 
properties 

Accurate 336 36 372 

Inaccurate 0 228 228 
  336 264 600 

Proportion of samples that were  
correctly accepted or rejected = .94 

EMPIRICAL TRIAL OF THE MAXCOV-HITMAX MODEL 
The MAXCOV-HITMAX method was also subjected to an empirical trial of 
detecting the biological sexes with MMPI keys (Golden et al., 1973). Three keys 
of 20 items each were constructed from the 60 most discriminating items (no 
“garbage” items were included) selected as described previously. 

The actual and estimated male and female taxa indicator distributions and the 
corresponding descriptive statistics for each of the three arrangements of the 
indicators are given in Table 5.4. That the parameter estimates are accurate enough 
for most research in the area of psychopathology measurement is clear simply by 
inspection. Usual tests of significance for comparing the actual and estimated 
frequency distributions are of no interest. 

Inspection of Table 5.4 also shows the actual (sample) hitmax intervals for 
keys 1, 2, and 3 to be 12, 9, and 10 respectively. The corresponding maximum 
covariances occur in intervals 12, 9, and 10, which are in perfect agreement with 
the true sample values. 

The predicted sex can be compared with the actual sex in terms of a hits-
misses table. The proportion of “female” predictions that were correct was .90, the 
corresponding “male” hit rate was .81, and the overall hit rate was .86. Such a hit 
rate must surely be pushing the maximum theoretically possible with the MMPI 
item pool. 
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In order to evaluate the accuracy of the prediction of biological sex by the 
MAXCOV-HITMAX model, several methods of prediction of biological sex as a 
dependent (criterion) variable with the indicator variables as the independent 
variables were tried. None of these methods, including Fisher’s linear discriminant 
function, did significantly better than the MAXCOV method in that the overall hit 
rate never exceeded .91. 

THE NORMAL MODEL 
We now develop a taxometric model based on the auxiliary conjecture that the 
indicator distributions are normal within each taxonomic class. When the MAX-
COV-HITMAX and the normal models were first developed, little consideration 
was given to the relative merits of two basic assumptions, those of zero overall 
and conditional covariance within taxonomic class and of normality within 
taxonomic class. The different starting points were chosen mainly because of the 
resulting mathematical tractability. However, it turns out, as we shall see, that the 
two models can be developed from the same general assumption. When indicator 
keys consist of summed MMPI items, it is sometimes reasonable to assume 
normality within taxonomic class because of the generalized version of the central 
limit theorem (Von Mises, 1964, p. 302). This theorem states that the distribution 
of the sum of many different independent Bernoulli variables with virtually any set 
of values for their means approximates a normal distribution. It follows then that 
independence between the items or any kind of dichotomous components of the 
indicator scales within each of the taxonomic classes is a sufficient assumption for 
both the normal and MAXCOV-HITMAX models. 

Whereas the MAXCOV-HITMAX model discussed in the last section requires 
that there be only two taxonomic classes, the normal model is easily generalized to 
any number of taxonomic classes. The model was developed first for use with just 
one indicator (Meehl, 1968) but it was later generalized for any number of indi-
cators (Golden, Tyan, & Meehl, 1974). 

One method of solving for the parameter estimates is by trial and error. The 
procedure for this kind of numerical solution for the single indicator dichotomous 
taxonomy case is extremely simple. Considering the three taxonomic class distrib-
ution parameters required on the normality assumption (i.e., the base rate, mean 
and standard deviation), we choose a triplet of these values (P, µt, σt) for the 
taxon. If we have a sufficiently large sample, then the manifest sample values 
determine the corresponding parameters (Q, µc, σc) for the complement. The 
procedure therefore consists of assigning arbitrary (sliding) values to the base rates 
P, Q, (Q = 1 – P), then to the latent means, µt, µc, and finally to the latent standard 
deviations σt, σc. This logical tree terminates in predicted resultant values for the 
observed (mixed) frequency distribution. We then compute a chi-square on the 
discrepancy between the predicted and observed frequencies. It serves first as a 
significance test (testing departure from the postulated latent model-cum-
parameter values) but also, more importantly, as a rough measure of the poorness 
of our approximation. See Meehl et al. (1969) and Golden and Meehl (1973a) for 
empirical trials of this numerical method. Suffice it to say here that the method 
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generally provided estimates comparable in accuracy to those of the MAXCOV-
HITMAX model in the detection of the biological sex taxonomy with MMPI 
indicator scales. 

It has been shown that the maximum-likelihood method and the minimum chi-
square method produce the same results for large enough samples (Cramér, 1946). 
However, the maximum-likelihood method requires much less calculation. An 
outline of the calculations for the maximum likelihood solution is given below; the 
interested reader is referred to the original article by Hasselblad (1966) for further 
analytical development. 

Suppose that there are n taxonomic classes denoted by the subscript j with 
distributions on an indicator X and the taxonomic class means, variances, and base 

rates denoted by µj, σj, and pj ( pj = 1)
j=1

n
∑ . Let X be divided into N intervals 

denoted by the subscript i so that the interval width is small compared to each σj. 
We assume that the density of the jth taxonomic class in the ith interval, 
represented by qij, is approximated by 

 qij =
1
2πσ j

exp
−(xi − µ j )

2

2σ j
2

⎡

⎣
⎢

⎤

⎦
⎥   (26) 

Let Qi be the compound density for the ith interval so that 

 Qi = qij pj
j=1

n

∑  (27) 

Hasselblad (1966) has shown that the maximum-likelihood estimates of the 
unknown latent parameters can be found by the steepest descent iterative 
procedure. The only required manifest parameter values are the compound sample 
distribution interval frequencies fi, i = 1, 2, 3, … , N. The procedure results in the 
following equations: 

 µ j = ( fi Qi )qij xi
i=1

N

∑⎡
⎣⎢

⎤
⎦⎥
dj   (28) 

 σ j
2 = ( fi Qi )(xi − µ j )

2

i=1

N

∑⎡
⎣⎢

⎤
⎦⎥
dj   (29) 

 pj = ( fiqij p j Qi )
i=1

N

∑⎡
⎣⎢

⎤
⎦⎥
N   (30) 

where 

 dj = ( fi Qi )qij
i=1

N

∑   

The iterative procedure begins with initial guesses of µj, σj, and Pj It has not 
been analytically determined how accurate the initial guesses must be, or whether 
convergence to the true values will necessarily obtain. However, several empirical 
trials have been encouraging with regard to both matters. The initial guesses can be 
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Table 5.6. Examples of Empirical Trials of the Normal Model* Using MMPI Keys to 

Identify the Sexes 

 
P̂m  µ̂m  σ̂ m  P̂f  µ̂ f  σ̂ f  χ 2  

First Key (N = 1105) 
Initial guess .500 6.00 3.00 .500 13.00 3.00  
No. of interations        

50 .417 9.45 2.50 .582 14.40 2.16 14.89 
100 .449 9.66 2.58 .551 14.51 2.12 14.58 
200 .483 9.88 2.67 .516 14.64 2.07 14.37 
300 .499 9.98 2.71 .501 14.69 2.05 14.33 

True sample value .389 9.57 2.55 .611 14.10 2.56  

Error .110 .41 .16 –.110 .59 –.51  

Second Key (N = 1105) 
Initial guess .432 7.36 2.37 .568 11.97 2.26  
No. of iterations        

10 .428 7.33 2.36 .572 11.95 2.27 13.34 
50 .411 7.24 2.32 .589 11.89 2.29 13.28 

100 .368 6.98 2.23 .632 11.72 2.35 13.18 

True sample value .389 7.31 2.42 .611 11.68 2.47  

Error –.021 –.33 –.19 .021 .04 –.12  

Third Key (N = 1105) 
Initial guess .500 6.00 3.00 .500 13.00 3.00  
No. of interations        

10 .418 8.64 2.54 .582 13.02 2.42 15.25 
50 .418 8.59 2.48 .582 13.06 2.38 14.92 

100 .416 8.58 2.48 .584 13.06 2.38 14.92 
200 .409 8.54 2.46 .591 13.03 2.40 14.91 

True sample value .389 8.60 2.57 .611 12.84 2.53  

Error .020 –.06 –.11 –.020 .19 –.13  

*Maximum-likelihood solution used. 

obtained by a method that makes use of probability paper (Harding, 1949), but 
subsequent study has indicated that reasonable estimates will suffice for most 
detectable taxonic situations. Each of the three MMPI keys used for the trial of the 
MAXCOV model was analyzed. The results are given in Tables 5.5 and 5.6. It is 
seen that the single indicator normal method gave accurate parameter estimates on 
the second and third keys after just 100 iterations, and it was about at this point 
that the series of estimates showed convergence. However, for the first key, the 
base rate estimate is only marginally acceptable, especially after the process had 
been continued until convergence was apparent. The exact significance of the 
larger number of iterations required for apparent convergence is not known; 
however, the result is illustrative of a general finding from trials of the method that 
when several hundred iterations are required for convergence, it is an indication 
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the results may not be accurate. We see from Table 5.6 that the chi-square 
poorness-of-fit values (comparing the estimated and the observed compound 
sample frequency distributions) do not approach significance for the three keys. 

An obvious consistency test for the normal model compares the estimated 
compound distribution with the observed. The chi-square measures discrepancies 
between frequencies and is a statistic providing a significance test. But here we do 
not ask whether the chi-square exceeds a critical value for statistical significance. 
Rather we ask whether it exceeds some “practical” value that casts doubt that 
accurate parameter estimation and nonspurious taxon detection obtain We have 
found that such a critical value for the chi-square parameter does not seem to exist. 

Many of the consistency tests suggested for the MAXCOV-HITMAX model 
can be used with the normal model. Several other tests flowing directly from the 
normality assumption are possible. 

One such test rests on the fact that the sum of two or more normally distributed 
variables is also normally distributed. Suppose we have two indicators X and Y and 
use the method with each and with a third indicator formed from the sum of the 
indicators. The base rate estimates should be the same when the indicators are 
used singly as when used as a sum. The mean and variance of the sum of 
indicators within each taxonomic class are given by 

 µt (X +Y ) = µt (X)+ µt (Y )   (31) 

 µc (X +Y ) = µc (X)+ µc (Y )   (32) 

 σ t
2 (X +Y ) =σ t

2 (X)+σ t
2 (Y )+ 2σ t (X,Y )   (33) 

and 
 σ c

2 (X +Y ) =σ c
2 (X)+σ c

2 (Y )+ 2σ c (X,Y )   (34) 

where σ(X,Y) is the intrataxonic covariance for the pair of indicator keys. We see 
then that when two indicators are summed, the single intrataxonic-class covariance 
between the two indicators can be estimated from the above equation. If both 
indicators are made up of, for example, MMPI items randomly assigned to each, 
then this covariance estimate should be sufficiently close to zero. 

THE BOOTSTRAP PROCESS 
We have repeatedly urged that successively improving the agreement of the model 
to the data should be one of the fundamental aims of taxometrics. If many 
bootstrap steps or iterations are required, care must be taken that excessive 
“psychometric drift” (Loevinger, 1957) does not occur. Through many iterations, 
the shared content of the set of indicators may change substantially, especially if 
only a few are found to fit the assumptions of the model. Consistency tests cannot 
ensure against “convergence” in a pseudo-bootstrap sequence resulting in erron-
eous inferences. It may seem that one has successfully used a bootstraps procedure 
when in fact there is decreased verisimilitude due to psychometric drift. The 
convergence is to the wrong latent situation, or at least to one further from the 
correct latent situation than obtained at an earlier stage of the process. Since this 
conceptual danger exists in taxometric bootstrapsing, as in all empirical inference 
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to latent causal entities, we look for ways to corroborate the desired increase in 
verisimilitude. We have used the following multiple criteria: 

1. Select indicators with clinical or face validity. 
2. Further select those that are positively correlated in the mixed sample. 
3. Delete or combine indicators that are inferred to be highly correlated within a 

taxonomic class. If a pair of indicators is highly correlated in this way, then 
one of the indicators should be deleted, or possibly, if it is substantively 
desirable, the two indicators should be combined to form a single indicator. 

4. Delete the indicators that do not discriminate sufficiently between the taxo-
nomic classes. 

5. Check the parameters for reasonableness with regard to considerations such as 
the following: 
a. Rank order of indicators in terms of validity. 
b. Size of P compared to previous research and to clinical experience. 
c. Indicators with a low false positive rate. 
d. Indicators with a high valid positive rate. 

6. Repeat the analysis with the modified indicator set if criteria (3), (4), or (5) are 
not met. 

DETECTION OF THE SCHIZOID TAXON 
In a pilot study (Golden & Meehl, 1979) MMPI items were selected as candidate 
indicators of schizoidia. Items were required to discriminate between schizo-
phrenics and normals, the hypothesis being that such items have better average 
potential to discriminate between schizoids and nonschizoids than items nonvalid 
against formal diagnosis. Fifty-three items discriminated between 96 diagnosed 
schizophrenics and the Minnesota normal sample by a difference of at least .20.  

Next we required that the item not be highly correlated with decompensation-
related variables, such as severity of illness. This requirement should reduce 
selection of items highly correlated with each other within the schizoid group 
mainly through underlying decompensation-related variables. We also wanted 
items that do not discriminate appreciably among other diagnostic classes (e.g., 
psychotics vs. neurotics), but were able only to require that an item not discrim-
inate highly among diagnosed subtypes of schizophrenia, or among those other 
psychoses for which we had samples of sufficient size. These “negative” require-
ments, aimed to minimize nuisance covariance (Meehl 1972b, pp. 160-174), were 
failed by 20 of the 53 previously selected items, leaving 33 items for further 
analysis. 

The sample used consisted of 211 male inpatients at the University of Minne-
sota Hospital who had been diagnosed as having a neurosis, personality disorder, 
or transient situational disorder. No diagnosed schizophrenics, patients with other 
psychotic diagnoses, or brain syndromes were included in this sample, so as to 
reduce the probability of detecting taxonomic classes other than the one of 
interest. 
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When the consistency hurdles method was applied to this sample, using the 33 
selected MMPI items, it deleted all but seven items. The taxon base rate was 
estimated to be .37. Applying Bayes’ Theorem to the estimated valid and false 
positive rates and base rate, individuals were classified as either schizoid or not. 
The Bayes’ probabilities tended to be close to zero or one, a result that previous 
Monte Carlo analyses have shown to indicate a real taxonomy. 

If one method correctly classifies a proportion p1 (a quantity we don’t know in 
practice) of the total mixed sample, while a second method does so with a 
proportion p2, and if the two methods make independent errors of classification, 
then the proportion of classifications for which the two methods agree is p1p2 + 
(1 – p1)(l – p2). For example, if p1 = p2 = .80, then the agreement rate would be 
.68. An estimate of the correct classification rate, p, for a single set of indicators 
can be obtained by a method developed in Golden and Meehl (1974, 1979). For 
each individual, we use Bayes’ Theorem to calculate the probability of being 
schizoid and that of being nonschizoid, and select the larger of these two values. It 
can be shown that an estimate of the overall correct classification is the average of 
the larger of these two probability values across all individuals. The model-based, 
estimated correct classification rate for each of the two sets of items was found to 
be about .85, which is quite high. The estimated agreement rate between the two 
classifications should then be about (.85 × .85) + (.15 × .15) = .75, close to the 
observed value of .70; so the concordance shows satisfactory agreement with what 
the separate classification estimates would have predicted. 

The MMPI item data were also analyzed by the MAXCOV-HITMAX and 
normal methods (described earlier). Each of these taxometric methods was used to 
detect the schizoid taxon, but with different sets of MMPI items than the above. 

Three scales were constructed from the 113 items that discriminated between 
the detected taxonomic classes of “schizoids” and “nonschizoids” by a difference 
of .20 or more. Factor analysis (Varimax rotation) of the 113 items in the total 
mixed sample (N = 211) suggested three factors; the 20 highest loading items for 
each factor were selected to form the three scales. When these three keys were 
used with the MAXCOV method, the taxon detected had a base rate estimate of 
.40, which agrees well with that of the first method. The MAXCOV method also 
includes consistency tests that help avoid being misled by inaccurate parameter 
estimates, and Monte Carlo study indicates that these work quite well (Golden & 
Meehl, 1973b). The passage of these tests provides additional support that the 
detected taxon is not spurious. 

Factor analysis of the 13 standard MMPI scale scores in the total sample 
(N = 211) produced a Varimax factor that accounted for 41% of the common 
variance and correlated highly with the Psychasthenia (.69), Schizophrenia (.53), 
Depression (.61), and Social Introversion (.79) scales; all other loadings were 
below .30, except for K (–.43). The items in these four scales were combined to 
make a long scale that was used as the single indicator. The schizoid taxon base 
rate was estimated by the Normal method to be .41, again in excellent agreement 
with previous estimates. The chi-square value of 2.3 was nonsignificant and below 
even the value expected if the assumptions of the method were perfectly satisfied. 
The difference between the two taxonomic class means on this indicator was 
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estimated to be about two class standard deviations. Since this is about the same 
degree of separation obtained for the sexes in the previous analysis using MMPI 
items, we have additional evidence that the schizoid taxonomy appears to be 
detectable with MMPI items as indicators. Recent unpublished research indicates 
that the seven items described above lack validity in other samples; we advise 
other researchers to use the indicator consisting of the above four MMPI scales in 
future work. 

All three of the taxonomic methods classified individuals as either “in” or 
“out” of the schizoid taxon, with agreement rates between pairs of methods near to 
that expectable from estimates of their misclassification rates. This result obtained 
even though the three methods are based on loosely related assumptions, and were 
used with different MMPI indicators. Also the three base rate estimates were close 
to each other and to a personal clinical estimate of .40 to .45 by Meehl; the latter 
was a prerecorded “impressionistic guess” based on some 30 years of outpatient 
private practice and the use of the Checklist of Schizotypal Signs (Meehl, 1964). 

Each individual whose probability of being a member of the schizoid taxon 
exceeded .50 was classified as “probable schizoid” and others as “probable 
nonschizoid,” thereby forming two subsamples that could be compared on other 
variables. The mean MMPI profile for the individuals classified as members of the 
schizoid taxon, presented in Figure 5.2, was nearly identical to the “2-7-8” code 
type. The mean MMPI profile for those individuals classified as not members of 
the schizoid taxon was considerably lower, and not similar to any standard code 
type. This subsample is presumably quite heterogeneous, as one would expect. 

 



 56 

The most impressive evidence of construct validity was that the mean MMPI 
profile of the schizoid taxon was very similar to that of a sample of pre-
schizophrenics studied by Peterson (1963). A search of Lanyon’s (1968) Hand-
book of Group MMPI Profiles revealed few nonschizoid diagnostic groups that 
also have the 2-7-8 mean profile pattern exhibited by both the present schizoid 
taxon and the Peterson preschizophrenic sample. 

There probably are neurological and physiological variables more powerful as 
indicators of schizoidia than MMPI responses. However, MMPI responses, even 
though far removed causally from any genetic etiological source, may still suffice, 
in samples of a thousand or more, to provide a convincing test of the existence or 
nonexistence of the schizoid taxon. The results of the present preliminary trial, 
even though the sample size is quite small, indicate that such a taxon is likely to 
exist. These results are sufficiently encouraging to justify an attempted replication 
of the present study with a much larger sample. The substantive results presented 
here are not regarded as confirmation of a theory, but are offered in the “context of 
discovery” (Reichenbach, 1938). 
 

TESTING THE SINGLE DOMINANT GENE HYPOTHESIS 

Meehl (1962) hypothesized that schizotaxics are born with a neurological pre-
disposition to acquire a personality organization with four cardinal personality 
traits: cognitive slippage, ambivalence, anhedonia, and social aversiveness, the 
inheritance mechanism conjectured to underlie schizotaxia being a dominant gene. 
This genetic hypothesis is related to the taxonicity aspect of Meehl’s theory. A 
theory taxonic at the genetic level permits stronger refutation tests than does one at 
the levels of personality or psychopathology. 

We have developed an interrelated set of tests that require the use of indicators 
on the parents of schizophrenic probands, who, according to the theory, must carry 
the schizogene because of their observable phenotypic condition. Suppose each 
member of the parent-pairs responds (+) or (–) to several dichotomous fallible 
indicators of the schizogene, such as a personality questionnaire item, a “soft” 
neurological sign, or whatever. Since the indicator is fallible, the dichotomy on the 
indicator is imperfectly correlated with the genetic dichotomy. We assume 
nonassociative mating so that (nearly) always one and only one parent of each pair 
of parents, under the single dominant gene model, is a schizotype. We assume that 
in the population of such parents the base rate of schizotypy is exactly one-half. 

To make the model mathematically tractable, we make the following auxiliary 
conjectures. These assumptions are made, for the moment, in the context of 
discovery, but later will be subjected to indirect empirical testing. 

A1 Each pair of indicators is independent within the schizotypic and within the 
nonschizotypic populations and 

A2 The response to an indicator by the schizotypic parent is independent of that 
of the nonschizotypic mate. 

Let us use the following notation: 

ps: the proportion of schizotypic parents that respond in + (schizotypic) 
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direction on a given indicator  
pn: the same for the nonschizotypic parents 
A: one of the parents determined by an indexing procedure either dependent or 

independent of schizotypy (as specified; A will also be used for the class of 
such parents) 

B: the parent (or class of parents) that is not A 
C: the (compound) class of all parents (the union of A and B) 
pc: the proportion of the parents that responded in (+) direction 
PAB: the proportion of the parent pairs where both parents responded in the (+) 

direction 
σAB: the covariance between the responses of the A parents with those of B 

parents for a given indicator 
Thus ps and pn are latent and unknown, and we first wish to express them as 

functions of manifest parameters. We have shown that: 
Under the assumption A2 and the single dominant gene hypothesis, 

 ps = pc + pc
2 − pAB( )12   (35) 

 pn = pc − pc
2 − pAB( )12   (36) 

for any indicator. Derivations of this and the following results are given in Golden 
and Meehl (1978). 

Next we shall propose a set of consistency tests that follow from A1, A2, and 
the single dominant gene hypothesis. If these tests are grossly unsatisfied by the 
observational facts, a strong suspicion arises that the model represents a poor 
approximation to the state of nature. Either the estimates of the latent quantities 
are untrustworthy, or, more importantly, the dominant gene hypothesis is discor-
roborated. First we have shown that: The covariance between the responses of the 
A parents with that of the B parents for any such valid indicator must be negative 
and is equal to the quantity – ¼(ps – pn)2 when the indexing is independent of 
schizotypy. 

If we have three indicators X, Y, Z, then under the assumption A1 we have for 
indicator X 

 ps = pc + 2
σ xyσ xz

σ yz

⎡

⎣
⎢

⎤

⎦
⎥

1
2

  (37) 

and 

 pn = pc − 2
σ xyσ xz

σ yz

⎡

⎣
⎢

⎤

⎦
⎥

1
2

  (38) 

where the three covariances refer to those of manifest-compound parent 
population. 

For any indexing independent of schizotypy, we have 

 σ AB (X)
−σ (X,Y )σ (X,Z )

σ (Y ,Z )
  (39) 
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for indicator X. It should be noted that σAB(X) is the covariance between parent 
pairs indexed independently of schizotypy, whereas σ(X,Y), σ(X,Z), and σ(Y,Z), 
refer to the compound parent population between two different indicators. 

Further, we have derived the following result: Under the independence assump-
tion A2 and the single dominant gene hypothesis and for any indexing of the parent 
pairs, the base rates of schizotypes among the A and B parents are given by 

 P = 1
2
± 1
2
K    (40) 

where 

 
K = pA − pB

(pA − pB )
2 − 4σ AB⎡⎣ ⎤⎦

1
2

P ≠ 12( )
   (41) 

  
Any indicator that satisfies A1, A2, and the single dominant gene hypothesis 

will produce the same value of P; in other words, the above expression of manifest 
parameters for K is invariant across such indicators and thus provides another 
means of indicator selection. 

Once we have determined P and Q as above, we can use the Dawes-Meehl 
equations (Dawes & Meehl, 1966) to obtain ps and pn 

If P is determined as in Equation (40), then 

 ps =
PpA −QpB
P −Q

  (42) 

 pn =
QpB − PpA
P −Q

  (43) 

The two kinds of covariances, those between the two responses of parent pairs 
to the same indicator X, denoted by σAB(X), and those between two indicators X 
and Y within either the A or the B parents, denoted by σXY(W), are related 
according to the next result. 

Under the above independence assumptions and the single dominant gene 
hypothesis, 

 σ AB (X)σ AB (Y ) =σ XY (W )  (44) 

for any two such indicators X and Y for any indexing of the parents. 

SUMMARY 
We view taxometrics as the application of formal (mathematical) methods to the 
problem of detecting nonarbitrary classes (types, species, disease entities, real 
syndromes that exist in the external world—“carving nature at its joints”), with a 
derivative formal procedure for sorting individuals in or out of such inferred taxa. 
There are three broad classes of taxometric problems, set by the investigator’s 
state of knowledge and his or her theoretical or clinical aims: In Type I, Accepted 
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Criterion Prediction, the taxon is known to exist and a defining (or quasi-infallible 
“proxy”) indicator is available in the research context. The aim is to devise, rely-
ing on the accepted criterion, a taxometric function of the (more usually available) 
fallible indicators that will classify future individuals where the accepted criterion 
is unavailable, at least at the time of classification. In Type II, Classical Cluster 
Analysis, the existence, number, and nature of taxa in a domain are highly prob-
lematic, so the investigator has no accepted criterion and, typically, does not wish 
to rely on substantive theoretical conjectures even for identifying privileged 
(“high-validity”) indicators. Instead he or she proceeds by constructing a matrix of 
interindividual similarity measures on a (usually large) number of indicators of 
unknown relative weight, hoping that by applying a suitable cluster algorithm to 
this data-summanzing matrix he or she will be able to discern the taxometric 
structure underlying the observed pattern. In Type III, which we have labeled the 
Conjectured Latent Taxon Problem, our knowledge situation lies somewhere 
between that of Type I and Type II, and the taxometric methods we advocate are 
tailor-made for that intermediate case. From prior knowledge of the domain 
(experimental studies, statistical analysis of file data, clinical experience, theory, 
common sense, intuition, or sheer guesswork) we conjecture the existence of a 
hypothetical taxon. 

Our own interest being theoretical, and our philosophy of science being realist 
rather than instrumentalist or fictionist, we think mainly of “true taxon” as 
designating an objective entity whose nature will ultimately be understood in some 
strong theoretical (structural, compositional, historical, or causal) sense. The 
clearest and most interesting examples in psychopathology (and the clinical 
sciences generally) are those in which the phenotypic taxon arises from a quasi-
dichotomous specific etiology (ideally a germ, a major gene, or a traumatic event, 
but including polygenic or environmental threshold effects, step-functions, 
Cattell’s “environmental molds,” etc.). However, while these methodological 
preferences inform our own thinking and have guided our research, a weaker view 
of latent taxonicity is compatible with the conjectured latent taxon strategy, since 
our “taxonicity” concept is pretty well specified implicitly by the formalism and 
the data. 

We think Type III is by far the commonest knowledge/aim situation presented 
in psychopathology. But whether that is true or not, Type II seems on present 
evidence, some offered by us here, to have no persuasive general solution, either 
theoretically or empirically. (See Skinner, 1981 for an illuminating discussion.) 
Focusing therefore on Type III, the conjectured latent taxon problem, we sketch 
out the usual mode of informal, nonmathematical discernment of a taxon by 
clinicians, with special attention to logical and methodological clarification of 
open concepts, contextual (implicit) definition, alleged circularity of causal 
explanation via inferred entities, the bootstraps effect, and the role of auxiliary 
conjectures in empirical testing. We emphasize the necessity for numerical point-
estimation or other “risk-taking” predictions, capable of yielding strong Popperian 
tests of a taxonomic model. We downplay traditional significance testing as a 
feeble, low-risk way to do science, and we advocate use of multiple joint 
consistency tests. But strict falsificationism is rejected in favor of specifying 
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numerical tolerances and approximations, recognizing that all mathematical 
models in the life sciences have imperfect verisimilitude.1 

Three new taxometric methods of our devising are explained, the MAXCOV-
HITMAX, the consistency hurdles, and the normal. Monte Carlo runs and a 
biological sex pseudo-problem with real data are offered (although the mathe-
matical derivations in this kind of taxometrics “speak for themselves”) as evidence 
of their usefulness. A preliminary study of the nondiagnosed schizoid taxon, 
identified by MMPI items, is presented. Finally, we derive equations for a theo-
retical extension of our taxometrics to the problem of testing a dominant gene 
theory using fallible phenotypic indicators. 
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