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TAXOMETRIC ANALYSIS : I. DETECTING TAXONICITY WITH TWO 
QUANTITATIVE INDICATORS USING MEANS ABOVE AND BELOW 

A SLIDING CUT (MAMBAC PROCEDURE) 1
' 

2 

PAUL E. MEEHL AND LESLIE J YONCE 

University of Minnesota Minneapolis, Minnesota 

Summary.-Given two quantitative indicators of a conjectured latent taxon, a sta­
tistical function defined as the difference between the observed means for cases of one 
indicator (designated for the procedure as the "output" indicator) falling above and 
below a sliding cut on the other indicator (designated as the "input" indicator) indi­
cates whether the latent structure is taxonic or nontaxonic ("factorial," "dimension­
al"). If it is taxonic, latent parameters, e.g., base rate, hit rates , complement and taxon 
means, can be estimated. Graphs can be inspectionally sorted with very high accuracy, 
even by laypersons. MAMBAC (Mean Above Minus Below A Cut) is one of a related 
family of taxometric procedures in Meehl's Coherent Cut Kinetics Method. 
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Coherent cut kinetics is a system of procedures developed by Paul E. 
Meehl to determine whether the latent structure of a data set is taxonic and, 
if it is, to estimate the latent parameters associated with the taxon and com­
plement (nontaxon) groups and to assign individual ele.ments to membership 
in one or the other group. 3 The phrase fCoherent cut kinetics' refers to the 
epistemology and mathematics of the approach: we move cuts on a desig­
nated input variable and study the statistical behavior of other (output) 
variables on cases in the region of the cut and in regions demarcated by the 
cut . Inferring latent parameters (base rates, means, valid and false positive 
rates), we test the model and the numerical values for consistency over dif­
ferent variables and over different procedures. We say 1kinetics1 because the 
cuts move, 1coherent1 because the inferences should be consistent. 

MAMBAC (Mean Above Minus Below A Cut) is one of the procedures 
used in the coherent cut kinetics method. The basic idea was first described 
by Meehl (1968, pp . llff) as an alternative procedure for locating the hitmax 
cut (that cut on an indicator which maximizes correct assignment of cases to 
the taxon or to the complement class). In fact, it does not locate the hitmax 
cut except in special circumstances, and the "quasi-proofs" in that technical 
report are unsound, probably due to poor approximation via differentials. 
What it does is to maximize the sum of hit rates above and below the cut. It 
was later presented as a consistency test for another procedure (the maxi­
mum covariance procedure, later called MAXCOV) and the expected shape 
of the graph for latently taxonic situations was described by Golden and 
Meehl (1973, pp. 15-16). It was used by Golden, Tyan, and Meehl (1974) as 

'For discussion of the meaning, existence, and detection of taxa (=real, nonarbitrary categories, 
types, entities) in personology and psychopathology, see Meehl (1992), Meehl and Golden 
(1982), and methodological references cited in those papers. 
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a consistency hurdles test in culling items. It has been used by Waller, Put­
nam, and Carlson (submitted) to detect a taxon of pathological dissociation. 

' In this article, it is shown that MAMBAC is capable of detecting taxonicity 
and estimating latent parameters. Although MAMBAC will be presented here 
as a stand-alone procedure, it is not optimally used that way. Rather it 
should be used as one of the battery of taxometric procedures and consis­
tency tests in Meehl's coherent cut kinetics method, each of which will con­
tribute indications of taxonicity (or lack of it) and produce parameter esti­
mates. The other procedures should confirm MAMBAC results or give im­
proved estimates in some cases for which MAMBAC is not the optimal pro­
cedure; likewise, MAMBAC will serve this function for the other procedures 
in the method. We will describe results to be expected using MAMBAC 
under both ideal and less than optimal conditions and present Monte Carlo 
evidence for the procedure. 

This monograph is written with two audiences in mind. Because this is 
the first full presentation of MAMBAC, we have included extensive appendi­
ces documenting the statistical rationale for the procedure and results of our 
Monte Carlo tests. Researchers who merely want to apply MAMBAC to their 
data sets and to have a basic understanding of the procedure and how to 
interpret their results need only read the main text; the appendices are not 
necessary to grasping or using MAMBAC. Those with more curiosity about 
the statistical underpinnings and who want to see evidence from our Monte 
Carlo tests in greater detail will have the appendices readily available. 

SELECTION OF I NDICATORS 

MAMBAC requires two variables (scores, indicators), at least one of 
which must be continuously 

4 
distributed; if both variables are continuous, 

the analysis can be run bidirectionally. It is desirable to have additional con­
tinuous variables so that more curves and parameter estimates can be gen­
erated and so that other procedures, e.g ., MAXCOV, which requires three 
variables (Meehl, 1973a; Meehl & Golden, 1982), can be run to provide con­
sistency checks and confirmation of results obtained from MAMBAC. 

Each indicator should be selected to give good separation between the 
complement and taxon groups, i.e., to have good validity, and also to be un­
correlated within either the taxon or the complement group with the other 
variable(s) being used, i.e., to have no nuisance covariance. The selection of 
variables is in the context of discovery and is bootstrapped via the procedures. 
The researcher cannot know the validity of an indicator beforehand. We 
must rely on clinical experience, nontaxometric research, e.g., fallible noso-

' Continuous is used here in the usual social science sense of quantitative, numerical, dimensional 
as contrasted with qualitative or dichotomous. Of course, no empirical numerical functions can 
be literally continuous in the mathematical sense, but, as in other sciences, we idealize that in 
the formalism, e.g., when we take derivatives to locate a maximum. 



1062 P. E . MEEHL & L. J. YO NCE 

logic diagnosis, even theory, to suggest good candidate indicators . But we are 
not "relying" on these conjectures in the strong sense of "having to assume" 
them in order to justify using the indicators they suggest . The coherent cut 
kinetics procedures will help us to determine how good are the indicators 
that we have selected, and they will help us pick those that are better at dis­
criminating an underlying taxon if one exists . That is, the coherent cut 
kinetics method (incorporating multiple procedures, MAMBAC being one of 
them) can be used as a "blind search" way of finding valid indicators for an 
underlying taxon. 

We favor theoretically motivated selection of candidate indicators, where 
one has in mind a conjectured taxon, however loosely conceived. One of the 
eight defects of cluster analysis as employed by social scientists (Meehl, 
1979) is the "blind" application of cluster algorithms to a mass of variables 
not so chosen. Despite this preference, based on historical, epistemological, 
and mathematical considerations to be elaborated elsewhere, we do not wish 
to be dogmatic on the issue. There may be circumstances in which an inves­
tigator has numerous quantitative scores on a large sample of subjects but has 
very weak faith in theoretical conjectures arising from clinical experience and 
conventional nontaxometric research. It may still be asked whether these 
data exhibit a pattern of relationships revealing a taxonic structure. In such 
situations we strongly advocate applying all of the several coherent cut ki­
netics procedures, because- lacking a "Gold Standard Criterion," relying on 
bootstrapped taxometric inferences-it is desirable to have as many epistemic 
paths to the inferred latent entity as possible. It is, of course, possible to em­
ploy MAMBAC alone in a blind inductive scanning of multiple candidate 
indicators . One would first compute conventional correlations between all in­
dicators pairwise and eliminate from consideration pairs showing negligible 
correlations . MAMBAC is then run on the surviving pairs , and those pairs 
manifesting a taxonic curve shape (described below) are identified. Suppose 
we find that indicators x, y, z, v are pairwise taxonic, i.e., MAMBAC results 
are taxonic for all of the possible unordered pairwise combinations . Then we 

would be able to get 2 C J = 12 estimates of the base rate, the latent means , 

and other parameters . 
In a more complex situation, we might discover that indicators x, y, z, u 

are pairwise taxonic (indicating a taxon T; ), indicators u, v, w are pairwise 
taxonic (indicating a taxon Ti , possibly different from T;, possibly not), but 
pairs xv, xw, yv, yw, zv, zw are not pairwise taxonic. We would eliminate the 
overlapping indicator u from the T; set, retaining it for Ti, and then we 
would be able to get 2 x 3 = 6 estimates for the various T; latent values and 
2 x 3 = 6 estimates for Ti . A general treatment of the blind inductive scan­
ning approach (TAXSCAN procedure which will also address the situation of 
multiple taxa) is planned for a subsequent article. 
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In the present article we have focused attention on taxonic separation of 
2 SD (in latent units), with some Monte Carlo runs on smaller ones (more 
thorough investigation of larger and smaller separations is planned). It seems 
obvious that detection of a very "weak" taxon (one with low base rate and 
small indicator separations) will be more difficult . It also seems reasonable to 
anticipate decreased accuracy-either in the sense of increasing bias or from 
larger random sampling error-of estimates of the base rate and other param­
eters (although our Monte Carlo runs so far indicate that the detriment is 
not as great as might have been feared) . 

Some may consider 2 SD separations unduly optimistic and unrealistic 
in the field of psychopathology, but it is not unreasonable to expect separa­
tions at least as large as 1.5 SD. We would adopt a simple rule of thumb for 
selecting candidate indicators: when the study employs an equal number of 
patients and controls , the indicators should yield not less than 75 % hits 
against crude, fallible , but relatively reliable diagnostic criteria of the usual 
concurrent or predictive validity sort. We could just as well have picked 66% 
or 80%, but let us explain why 75% seems a reasonable value. A taxometric 
indicator good enough for strong corroboration and accurate parameter esti­
mates should, we think, perform at least as well as the old MMPI single 
scales do using a pre-DSM-III, generally unreliable psychiatric diagnosis as 
criterion. A refined psychometric or psychophysiological device in the pres­
ent state of the art, bootstrapped from diagnoses based upon present-day re­
search diagnostic practices and aiming at the inferred inner state (whether 
genetic, psychodynamic, or biochemical) rather than at the symptomatically 
dispersed forms of the symptoms and signs of mental disease, should, we ar­
gue, do better than the original MMPI did against the psychiatric diagnoses 
available in the early days of the derivation and validation of the MMPI as a 
diagnostic instrument. A hit rate of 75 % with base rate P = lf2, assuming 
two overlapping normal distributions of equal variance to make the arithme­
tic easy, entails that the cutting score for that hit rate in the symmetrical 
case will be at the 75th percentile of the control distribution and at the 25th 
percentile of the taxon distribution. This percentile cut is at one probable 
error (PE, in the old terminology) , which is at .6 745 SD, or approximately 
two-thirds of a standard deviation above and below the two means of the 
complement and taxon groups, respectively. For this symmetrical case, that 
locates the hitmax cut midway between the latent means; thus the distance 
between the complement and taxon means is double the hitmax distance 
from each, or approximately i SD (1.33a) above the complement mean. In 

terms of a single scale on the old MMPI, this would require a separation 
such that the mean T score of the pathological group would be f = 63 , which 
is clearly worse than is found with any of the MMPI scales in respectable 
studies (the only scale which approaches that feebleness of discrimination is 
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Scale 6, Pa). Any clinician familiar with the MMPI research literature knows 
that almost all the scales considered singly, i.e., without regard to profile 
pattern, yield mean T scores, for reasonably carefully diagnosed pathological 
groups corresponding to the scale's name, in the region T = 70-80; some of 
the better, i.e., longer and more valid, scales come closer to 80 or even 85 
(see, e.g., Lanyon, 1968). We think it not unreasonable to advise researchers 
to use indicators-whether psychometric, interview rating, biochemical, or 
physiological-that yield at least 75% (latent) correct classifications in the 
symmetrical case. 

Adopting a rule of thumb "at least 75% hits" against chart diagnosis 
(concurrent validity, imperfect-no "Gold Standard Criterion") is intended 
to set a plausible lower bound on taxonic hit rate (construct validity for Om­
niscient Jones's perfect criterion, unavailable to the investigator until inferred 
from the taxometric results). It cannot provide a strictly safe lower bound 
for several reasons . Clinicians' diagnostic errors are likely to be correlated, vi­
tiating a standard attenuation correction. A deeper (and intractable?) obfus­
cator is intrinsic deficiencies in the diagnostic construct itself (unreliability 
aside) which, of course, it is the aim of taxometrics to correct. Further, this 
"conceptual" nuisance influence may be correlated with the indicators, pro­
ducing reliable but invalid components, tending spuriously to boost concur­
rent validity. Thus we have countervailing influences tending to inflate and 
depress concurrent diagnostic validity from the true latent taxonic validity, 
and no precise way to estimate their net effect (cf. Meehl, 1990e) . It is tax­
onic construct validity that is our regulative ideal in all these matters, but that 
elusive number is known only indirectly and approximately, as the outcome 
of our taxometric labors. 

Cut optimality can be illustrated with a simple hypothetical situation in 
organic medicine where symptoms and signs are specified by cuts on a pair 
of quantitative indicators and the results tallied in a 4-fold concordance ta­
ble. Suppose the disease entity meningitis (a taxon) produces markedly ele­
vated temperature, say, temperature ;::: 105 ° in the acutely ill, and-for the 
noncomatose-intense pain upon anteroflexion of the head, a symptom re­
lated to the "objective" Brudzinski sign. Let the meningitis patients be min­
gled with patients having other diseases, some of which produce fever (but 
of lower degree) and "stiff neck" (but less painful), and some of which pro­
duce only one or neither of these; and we will also include some cases free 
of any illness. If we define the high fever sign by a cut at the symptomatic 
temperature ;::: 105°, and neck sign by the symptom excruciating pain upon 
anteroflexion, all of the meningitis cases will manifest both signs and symp­
toms, and none of the other sick or the well cases will do so. Hence the 4-
fold table of sign/symptom concordance will exhibit no tallies in the discor­
dant ( + / - or -/ +) cells, and the ¢ coefficient will be 1. Let us now move 
one or both cuts downward, defining "fever" sign as temperature > 100° 
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and "stiff-neck" sign as any pain, mere discomfort, or resistance on bending. 
These lower fevers will now be found in patients with a variety of non­
meningitis diseases, some of whom will have stiff necks , others not . For in­
stance, patients with minor muscle or joint stiffness due to bacterial infec­
tious illness will usually be febrile, those with a viral infection usually afe­
brile . People can have a "stiff neck" from such conditions as arthritis, trau­
ma, infectious disease, sleeping posture , chilling, or hysteria; some will be 
febrile, some not. These varying etiologies underlying the signs and symp­
toms will produce numerous cases tallied in the discordant cells of the 4-fold 
table, and the r/> coefficient will be markedly reduced because our cuts are 
nonoptimal. This effect is, of course, not peculiar to signs and symptoms of 
disease or taxonicity generally; it is an instance of perhaps the most general 
of scientific epistemic principles: specify concepts (measure, classify, define, 
group, separate, aggregate) so as to discern maximum order. This powerful 
over-arching guideline applies whether we are researching inorganic chemis­
try, geology, animal species, personality, or types of mental illness. 

RATIONALE FOR MAMBAC 
The statistical procedure is motivated by a simple idea: the effect of 

sorting on a quantitative property that discriminates two categories. Suppose 
two groups , a taxon and its complement, i.e., all cases not members of that 
taxon, differ with respect to a quantitative variable y, so that, although the 
two distributions may overlap, their means are different , ji1 ~ Yc I_! cases are 
sorted perfectly into taxon and complement, the mean difference dy between 
the two categories will be ji1 - Yc. If now we randomly exchange some cas­
es, "contaminating" the pure taxon group by introducing complement cases 
and conversely, the new ji/ will be pulled down and the new ji/ pulled up, 
decreasing the group difference dy by some amount (ignoring rare sampling 
error) . The more we scramble the groups, each becoming more " impure" by 
the presence of wrongly sorted members from the other, the greater will be 
the attenuation of the observed dy . 

Suppose there is a second variable x which also discriminates the taxon 
and complement members , but with overlap, and the variables are uncorre­
lated within categories (no xy nuisance covariance) . Any cut on x (which we 
shall designate as the "input" variable) which classifies cases (into those 
above the x-cut and those below it) thereby determines a certain degree of 
scrambling of taxon and complement members, and hence produces a certain 
separation on y (the "output" variable). A " better" cut on x will tend to 
yield a larger observed separation on y. Hence the empirical function 
dy(x) = .Ya(x) - Yb(x) can be used to locate an optimum x-cut (derivation of 
the latent formula for MAMBAC is given in Appendix A, pp. 1111-1119) . 
The initial intuition was that maximizing dy(x) would serve as a way of locat­
ing the hitmax cut on x (as in the MAXCOV-HITMAX procedure; see 
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Meehl, 1973a; Meehl & Golden, 1982), but this is not the case . Maximizing 
dy(x) does not maximize total hits, i.e., minimize misclassifications, but 
rather it maximizes the sum of hit rates above and below the x-cut, that is, 
it maximizes the latent quantity h = h. + hb where 

Ha and Hb being the "raw" hits, i .e., frequency of correctly classified cases 
above and below, respectively. The denominators Na and Nb are the cases 
falling above and below the cut rather than correctly classified cases as in 
the valid positive rates 

Although the Monte Carlo tests reported in this article are based on 
Gaussian distributions, normality is not a required assumption for MAM­
BAC. The analytical theorems on which MAMBAC is based do not postulate 
normality or equality of variance. The basic theorem dy(x) = (ha + hb - 1) 
(yt - Yc) is an algebraic identity. That hb-->Q as x-->oo holds for any pair of 
smooth distributions such that the taxon density function ft(x) exceeds the 
complement density function f c(x) for all values x > K (large enough) and 
both densities are asymptotic to the baseline (Fisher's " high contact") as 
x--> oo . For empirical data, absent gross measurement or clerical error, this 
yields a cut on x above which literally no complement cases fall . The only 
further assumption is unimodality of the latent curves . 

Additional Monte Carlo work is needed to cover non-Gaussian latent 
distributions and to investigate unequal variances and nuisance correlations 
more thoroughly than has been done in this article . We encourage other re­
searchers to participate in this large-scale task and also to apply MAMBAC to 
nonartificial empirical data that depart markedly from the idealizations of 
our Monte Carlo studies to date. 

THE MoNTE CARLO SAMPLES 

In order to see how MAMBAC performs for different situations a re­
searcher might encounter, we generated samples for various configurations, 
e.g., with different base rates, sample sizes, separations of the latent comple­
ment and taxon classes, presence of nuisance covariance within the latent 
classes. We could not , of course, cover every possible situation, but we tried 
to choose configurations that would illustrate those variations researchers 
would most expect to encounter. The different configurations will be intro­
duced in later sections as they become relevant. 

Because there would be random error associated with any particular 
sample, we generated 25 separate samples for each of the configurations . 
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Thus, for a configuration having a particular base rate, a particular separa­
tion between the complement and taxon classes, and a particular amount of 
nuisance covariance, there will be 25 samples. We present data from some of 
the samples (usually the first 10 samples) in the text; data for all 25 samples 
are given in appendices for readers who wish to see more examples for each 
configuration. Each sample has a coded name, consisting of a configuration 
code with the particular sample number (1 through 25) appended to it. We 
have tried to present all material in such a way that it is not necessary to learn 
the configuration code names; they merely identify particular Monte Carlo 
samples for readers who may want that amount of detail. 

Each Monte Carlo sample has four continuously distributed variables 
(because another procedure in the coherent cut kinetics method requires that 
many). MAMBAC requires only two variables. When there are more vari­
ables, MAMBAC can be used on all possible two-variable combinations. 

Our Monte Carlo samples were all constructed using normally distrib­
uted random deviates. Thus a nontaxonic sample will have an expected 
mean= 0 and an expected standard deviation= 1.0. A researcher may or may 
not standardize scores before using MAMBAC on a data set; it will not affect 
the interpretation of MAMBAC results. (A researcher who has more than two 
variables may want to standardize them if other coherent cut kinetics proce­
dures are going to be used; for instance, there may be advantages for in­
terpreting MAXCOV results .) 

Here is a more detailed description of the way we generated our Monte 
Carlo samples, for readers with a special interest . Construction of a sample 
began with a unique file of random deviates. 5 To generate four indicators per 
subject, we used five random numbers per subject; hence we started with a 
file of 5 x N random deviates for each sample. For a given subject;, the first 
random deviate in a sequence was multiplied by a factor loading (predeter­
mined by the desired configuration) of each indicator in turn, to make four 
expected scores for the subject. If the sample was to be a taxonic one with 
no nuisance covariance, i .e., no indicator correlation within the taxon or 
within the complement, this factor loading was .001, to approximate zero 
without crashing the computer program; the factor loadings for each indica­
tor were higher when we wanted to create nuisance covariance within the 
taxon and nontaxon classes. If the sample was to be a nontaxonic one, factor 

' This set of normally distributed random numbers was generated by a program written in C by 
William M. Grove. The algorithm consists of two steps: Generate uniform random numbers, 
and use these to generate normal random numbers. The uniform generator is a straight multipli· 
cative congruential r.n.g. of modulus 231 - 1, described by Fishman and Moore (1982) and 
using their multiplier VIII. This multiplier passes tests of independence and equidistribution on 
univariate through trivariate spaces. It also passes the lattice test. The critical parts of the pro· 
gram are in 80 x 87 assembly language code for speed and for consistent 64-bit precision (80 bits 
are carried on intermediate results). The method of generating normals is the "convenient" 
method of Marsaglia and Bray, which is documented by Kennedy and Gentle (1980). The Mon· 
te Carlo samples are available upon request . 
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loadings were set to create a desired amount of expected correlation between 
the indicators. The next four random deviates were used to add error compo­
nents to each of those expected scores; if the subject was to be a taxon 
member, the assumed amount of taxonic separation was also added to each 
variable. Then the following sequence of five random deviates from the in­
put file was used to create the four scores for the next subject;+ 1 , and so on 
for the rest of the subjects in the sample. Nontaxonic comparison samples 
were generated by using factor loadings such as to match the manifest corre­
lations between variables that resulted from different taxonic separations and 
nuisance covariance in taxonic samples. 

CALCULATION OF MAMBAC vALVES 
The first step is to draw a graph of differences between means calcu­

lated from output variable values for cases located above and below succes­
sive cuts along a continuous input variable . Restating this : Successive cuts 
are defined along the input variable . At each cut we calculate a mean on the 
output variable for the cases located above the input cut, and another mean 
for the cases below the input cut; we subtract (mean above minus mean be­
low) and the resulting difference is one point on our MAMBAC graph. The 
input variable is used to determine whether a subject falls above or below 
the cut; the subject's output scores are used to calculate the mean differ­
ences. The number of points on the MAMBAC curve will be equal to the 
number of cuts we have defined on the input variable . 

Although the procedure is quite simple, it is an unfamiliar way of ma­
nipulating data, so we will describe the algorithm once more, this time with 
a diagram. Let us suppose we have N subjects, and each subject has a score 
on x and a score on y. To help in explication, let us say that we sort the sub­
jects from low to high according to their x-scores (for a computer program, 
an explicit sorting is not necessary; the program need only ask whether a 
subject 's x-score is above or below a particular cut). We choose an initial cut 
near the bottom of the x-distribution. For the subjects falling below this cut, 
we calculate the mean of their y-scores, and we do the same for the subjects 
falling above the cut. Subtracting the y-mean for those cases below the x-cut 
from the y-mean for subjects above the cut (Mean Above Minus Below A 
Cut), we get a difference dy(x)u1• Then we move the cu_!: to a second point on 
the x-distribution and get a second mea~ difference , dy(xJr21 • We repeat this 
proced~re for successive cuts, getting a dy(x) value each time. When we plot 
these dy(x) values , the curve shape will tell us whether the underlying struc­
ture is taxonic or not. 

When both variables are continuously distributed, we reverse the roles 
of input and output and get a second d)y) MAMBAC curve, withy as the 
input variable and x as output. Additional variables are used in all possible 
combinations . In our Monte Carlo tests, we have used four continuous vari-
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abies (x, y, z, v) , which give [ ~ J x 2 = 12 possible input/output combina­
tions , resulting in 12 MAMBAC graphs for a given sample. 

input 
x-cuts 

Ybelow(l] Yabove[l] 
r--lr-------------~~--------------~ 

Subtract to get 

dy(x)[ll 

Yabove[n] 

.-----------------------------.r--l 

1st 2nd . . . . last 

The cuts along the input variable can be made on the basis of either in­
tervals on the abscissa, e.g., .25 standard deviation intervals along the dis­
tribution of the input variable , or number of cases, e.g., deciles on the 
sorted input distribution. Whichever of those ways we choose, two things 
are relevant in deciding how coarse to make the cuts. Because the shape of 
the graph of the mean differences is what we ate interested in, there should 
be enough cuts, i.e., enough points on the MAMBAC graph, to make the 
shape of the MAMBAC curve clear. Going solely by this criterion, one 
would think the more points (cuts) , the better. But, of course, we want to in­
clude enough cases (from the output distribution of scores) per cut (on the 
input distribution of scores) to keep the progression of the curve fairly stable 
at either end. 

Most of the Monte Carlo runs included here used intervals on the ab­
scissa. Steps at - 2 .50 SD, - 2.25 SD, ... + 2 .50 SD were defined around 
the observed mean of the input distribution. We checked both ends of the 
input distribution and accumulated cases (moving forward from the low end, 
backward from the high end) until there were at least 15 cases below (or 
above) the defined cut . This located the beginning and ending cut locations 
for a single MAMBAC graph. Fifteen was chosen (more or less arbitrarily, 
based on observations from initial Monte Carlo runs) as a minimal n for ob­
taining fairly orderly results. Because the method uses all the cases below 
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and above each successive cut, this guaranteed that any cut would have at 
least 15 cases above and below it . The result is usually about a dozen cuts 
along each input variable for samples with N = 300. 

Pseudocode for calculating MAMBAC using four continuously distrib­
uted variables and cutting on the basis of abscissa intervals and of deciles is 
shown in Fig. 1. This was extracted from the Modula-2 (LOGITECH, Inc., 
Version 3.0) program used for the Monte Carlo runs reported here . 

Pseudocode from MAMBAC program used in Monte Carlo runs 

combinations of variables: xy, xz, xv, yz, yv, zv 
FOR each combination of variables DO 

Begin with the first variable as input, second variable as output; 
then repeat the procedure using the second as input, first as output 

Get doutput (input) at successive cuts of .25 SD from the mean of the input variable 

Determine possible cuts around the mean of the input variable: -2.50 SD, -2.25 SD, 
-2.00 SD ... 2.50 SD 

Check each end of the input distribution and move inward until there are at least 15 
cases below (or above) a predetermined cut; this defines the first and last cut at which 
d will be calculated 

FOR each cut c DO 
FOR all cases i in the sample DO 

IF the input score[i] < the cut THEN 
sumBelow : = sumBelow +output score[i]; 
nBelow : = nBelow + 1; 

ELSIF the input score[i] ~ the cut THEN 
sumAbove : = sumAbove +output score[i]; 
nAbove : = nAbove + 1; 

END(* if '•); 
END (* for i '•); 
outMeanBelow[c] : = sumBelow I nBelow[c]; 
outMeanAbove[c] : = sumAbove I nAbove[c]; 
MAMBAC[c] : = outMeanAbove[c] - outMeanBelow[c]; 

END (* for each cut ;,) 

Plot obtained MAMBAC values over cuts (Smooth curve if necessary) 

Get d output (input) by decile cuts on input 
Sort scores on input variable, keeping output variable scores properly associated with each 
Determine the number of cases in each decile (depends on N) 
Proceed as above using cuts at successive deciles on the input variable 

END ( * for each combination of variables *) 

( * It will be helpful later to have saved the MAMBAC[c], nBelow[c], and nAbove[c] values 
at each cut in an output file that can be read for making parameter estimates *) 

FIG. 1. Pseudocode for MAMBAC 
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With more sophisticated graphical analysis software which has become 
available since we began our Monte Carlo work, it may be possible to slide 
the cut by any arbitrary amount, even one case at a time, and then impose a 
smoothing procedure on the final curve. An example of such code, including 
the resultant MAMBAC curves, is given in Fig. 2 . The code shown there is 
S-Plus (Statistical Sciences, 1992). 

Example of MAMBAC code and resultant curves using the S-Plus language 

# start with a data vector "xy" composed of variable pairs x and y arranged in two columns 

# using x as input , y as output to get d/x), sort on x, assumed to be in the first column 
# of "xy" 

sortedx <- xy[sort.list(xy[, 1]) , ] 
N <- length(sortedx[ , 1 ] ) # define N as the number of pairs, 

# 600 in this sample 

MAMBACxy <- vector ("numeric" ,N) # define a vector to hold the MAMBAC values 

# at successive cases on x, get the difference between y above and y below 
#ignore 15 cases at either end for improved stability, move the cut by one case each time 

for (i in seq(15 ,585, 1) ) { 

MAMBACxy[i] <- mean(sortedx[i:N,2])- mean(sortedx[l:i,2]) } 

#create a window, plot the MAMBAC values , and overlay the points with a lowess 
# smoothed curve 

Index 

a6-50-20.1 in= x, out= y 

FrG. 2. S-Plus code for MAMBAC 

Nontaxonic 

300 500 

Index 

C600.1 in = x, out= y 
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While a computer program is handy for large samples or for doing 
MAMBAC repeatedly, it is not required . A researcher with only a single, not 
too large data set can easily do MAMBAC with paper and pencil. An optimal 
way to go about it would be to record each subject's scores for x and y on a 
3- x 5-in. slip and sort the slips in ascending order for x. Set up columns on 
a tabulation sheet: Successive cuts on x, sum of y-scores above cut, n cases 
(=slips) above cut, y above (=sum of y-scores above/n above), sum of y­
scores below cut , n cases below cut, y below (= sum of y-scores below/n 
below), dy(x) ( = y above - y be~w) . Add, divide, and subtract to get the 
values at each cut, _!hen plot the dy(x) values on graph paper. To get a second 
MAMBAC curve, dx(y) for the data set, sort the slips according to scores on 
y and repeat the process. 

Smoothing may make the MAMBAC curve more aesthetic and easier to 
interpret at a glance. We have experimented with different curve-smoothing 
techniques-weighted means , polynomial fit, lowess (Cleveland, 1979) , and 
repeated medians (described by Tukey, 1977, pp . 212-213) . It does not seem 
to matter much which technique is used; under some circumstances, e.g., 
base rate P= .50, good indicator validity, no nuisance covariance, N::=::300, 
and cuts made on the basis of deciles, smoothing may not be needed at all. 
With base rates less than .50, some smoothing techniques show the underly­
ing curve shape better (see below) . All Monte Carlo curves presented here 
were drawn using S-Plus (Statistical Sciences, 1992); data points are plotted 
and superimposed with smoothed curves obtained by Tukey's procedure as 
implemented by 5-Plus . 

DETECTION OF T AXONICITY WITH MAMBAC 
If the underlying structure is taxonic, MAMBAC graphs tend to be con­

vex upward, with the location of the peak depending on the latent base rate 
and the taxonic separation. Theoretically, the peak will be near the hitmax 
cut, i.e., that cut on the input indicator which minimizes misclassifications. 
As stated above, what is literally maximized at the peak value, however, is 
not total hits but the sum of hit rates above and below the cut, h = h. + hb 
(see proof in Appendix A, pp. 1111-1119). A nontaxonic latent structure re­
sults in graphs with a fairly symmetrical dish shape (concave upward) , lower 
in the middle range and higher on the ends. Fig. 3 shows the ideal MAM­
BAC curves (based on error-free normal-curve values, not Monte Carlo data) 
for a good taxonic situation and for the nontaxonic situation. 

MAMBAC curves from Monte Carlo samples are shown in Fig . 4. The 
panels in the top row are from 10 taxonic samples with N = 600, a base rate 
P = .50, and 2 SD separation on each of four variables; cuts on the input 
variable were made on the basis of .25 SD units. Each panel represents the 
12 curves (offset for visual display) generated by four variables for a single 
sample; the input/output ordering of the variables is shown on the left. Su-
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FrG. 3. MAMBAC error-free curve shape for P = .50, 2a separation on each variable , and 
no nuisance covariance . Solid line is the taxonic situation; dashed line is the nontaxonic situa­
tion when rxy =.50. 

perimposed on the points are smoothed curves using Tukey's 4(3RSR)2H 
twice method (Tukey, 1977, Chapters 7 and 16). MAMBAC curves from 
nontaxonic samples are shown in the lower row of panels. Because taxonic 
separation generates correlation between the variables, we imposed factor 
loadings on the variables to generate a comparable correlation when we cre­
ated the nontaxonic samples. In the taxonic samples shown in Fig. 4 the ex­
pected r;; =.50 (P = .50, 2 SD separation on each variable, and no nuisance 
covariance; see Appendix B, pp. 1120-1121). In the nontaxonic comparison 
samples, factor loadings of . 707 on each variable generate the same expected 
r;; =.50. 

For exposition, we have shown curves from only 10 samples of each 
configuration (taxonic and nontaxonic) in Fig. 4. They are unselected, i.e., 
they are merely the first 10 samples from each of these two Monte Carlo 
configurations. To see the difference between curves generated by a taxonic 
versus a nontaxonic configuration, any panel in the top row could be com­
pared with any panel in the bottom row. Curves from all 25 samples that 
have been generated for each configuration may be found in Appendix C 
(pp. 1122-1151; the first 10 panels there will be identical to those in Fig. 4). 
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Clearly MAMBAC detects taxonicity for the samples shown here. 
Curves from taxonic samples tend to be arched upward in the middle. The 
nontaxonic curves tend to be symmetrically dish-shaped. In fact, the curve 
shapes from taxonic and nontaxonic samples are almost mirror images of 
each other for this taxonic configuration. Although not all curves within 
every sample show the expected shape, at least one curve (usually more) in 
each sample clearly indicates either a taxonic or nontaxonic shape. With this 
amount of correlation between the variables, there are no curves in our non­
taxonic Monte Carlo samples that would mislead a researcher into thinking 
the sample is taxonic when it is not (see Appendix C, configuration C600, p. 
1131) . 6 

Within the taxonic samples , we sometimes see individual curves that are 
not clearly taxonic . This points up the value of multiple continuously distrib­
uted variables: Often when one input/output combination of variables does 
not give a clearly taxonic curve, reversing their input/output status does. For 
example, in sample 23 of this configuration (Appendix C, A6-50-20, p. 
1130), the curve for variables y (as input) and v (as output) is clearly tax­
onic, while the vfy input/output combination gives a curve that is not clearly 
anything. A researcher with only these two variables could rightly conclude 
that the sample was taxonic. But this advantage with curve pairs is not guar­
anteed. In sample 18 (Appendix C, A6-50-20, p. 1130), values obtained us­
ing x and z in both input/output combinations yield curves neither of which 
looks taxonic when smoothed. Thus, with only two variables, it is possible to 
miss detecting a taxonic situation. 

Because we do not yet have an algorithm for testing whether a MAM­
BAC curve is taxonic or not, we asked people to sort graphs by inspection. 
For this task we mixed nontaxonic curves and taxonic curves from samples 
with base rates of .50, .25, and .10 (which yield different curve shapes; see 
below) . Twelve people with no special training in psychology or other areas 
relevant to the task sorted 150 panels (12 curves per panel) with 98% 
over-all accuracy. Four psychologists (one of them the first author) and a 

' Under what latent conditions can a nontaxonic quantitative factor generate a MAMBAC curve 
that looks clearly taxonic? Assuming the classic psychometric factor model, the following neces­
sary and sufficient conditions hold for a test score defined as summed dichotomous (1 or 0) 
items: Steep item-characteristic ogives closely located iff [if and only if] high interitem ¢-coeffi­
cients iff a U-shaped frequ~ncy distribution of the input variable iff ipso-MAMBAC (our term 
to designate the graph of dx(x), the MAMBAC function computed on the values of the input 
variable itself, rather than for y upon x) hump on the input variable iff a MAMBAC hump on 
the output variable. The parametric questions "how steep" and " how closely located" await 
Monte Carlo investigation. But, it is clear that very high ¢-coefficients are required to counter­
vail the powerful Central Limit Theorem; and if the 4-fold table has disparate marginals the 
¢-coefficients are severely constrained, e.g., difficulty levels of .90 versus .50 for an item pair 
impose an upper bound <f>i; -5, .30 even if each item were a step-function of the latent factor 
score. As an empirical fact, such item properties are almost never found even when one works 
hard to achieve them. To our knowledge, the only test domain that presents U-shaped frequency 
distributions is trade tests; but these results are not spurious as a skilled trade is a genuine 
taxon of environmental mould origin. 
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graduate student in clinical psychology sorted them with accuracy rates of 
99 .7% for taxonic samples and 99.4% for nontaxonic samples. To test how 
well a researcher could sort curves if only two variables were available (hence 
only two curves from a sample instead of 12), three of the psychologists who 
had sorted the panels later sorted 900 pairs of curves. All three had accuracy 
rates of 99%. Details of these sortings are given in Appendix D (pp. 1152-
1156). 

Effect of Different Methods of Cutting on the Input Distribution 

The variability in the curves is reduced when cuts on the input variable 
are made according to deciles . When MAMBAC curves are plotted both 
ways on the same axes, the decile curves will look dampened compared to 
those generated on the basis of abscissa cuts. This is because there are fewer 
points to be plotted with the decile curves and they are stretched along the 
x-axis (with very large samples, one might use finer cuts than deciles and 
thereby increase the number of points). When axes are adjusted, decile 
curves also indicate taxonicity or nontaxonicity and may present a "cleaner" 
looking and somewhat more orderly graph, such that smoothing may seem 
superfluous with a large sample. Otherwise, for detection of taxonicity there 
seems to be no particular advantage or disadvantage to either way of making 
the cuts. Fig. 5 shows the same samples as in Fig. 4 but with deciles used as 
cutting points on the input variable. Notice the tendency for the same 
curves, i.e ., same sample and same input/output combination, to look more 
or less peaked (or dish-shaped in the nontaxonic samples) and to have gener­
ally the same orientation vis a vis other curves within the sample whether 
abscissa units or deciles are used as the basis for the MAMBAC cuts. To 
avoid needless duplication, we will show only curves based on abscissa cuts 
in the rest of this article. 

Effect of Sample Size 

MAMBAC can detect taxonicity with smaller samples, but large samples 
are highly recommended, especially if the base rate is suspected to be less 
than .50. When the base rate is low, there simply may not be enough taxon 
members at the high end of the input distribution to generate a taxonic 
MAMBAC curve. The stability of the curves increases with larger sample 
sizes, and there is less chance to be misled. With smaller samples the num­
ber of intervals, hence the number of points for plotting, is reduced when 
cuts are based on the abscissa. Taxonic curves from different sample sizes are 
shown in Fig. 6. 

Fig. 7 shows nontaxonic curves from samples of different sizes . With 
small samples, it is particularly important to have more than two continuous 
variables so that more MAMBAC curves can be plotted . 

Effect of Base Rate 

With base rates less than .50, the peak of the MAMBAC curves moves 
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to the right. Fig. 8 shows the effect of different base rates on error-free 
MAMBAC curves with 2 SD separation and no nuisance covariance for 
either variable . The dish-shaped curve is the nontaxonic situation with r xy = 
.SO. Larger samples become more important with lower base rates, but curves 
from samples of N = 300 look different when P = .SO , .25, or .10, other fac­
tors being favorable, e.g., multiple variables with 2 SD separation on each , 
no nuisance correlation. For base rates greater than .50 , the MAMBAC peak 
shifts to the left of center. Thus for P = . 7 5, MAMBAC curves would look 
like curves for P = .25 but with the peak on the left. Fig. 9 shows MAM­
BAC curves for Monte Carlo samples with different base rates . The taxonic 
panels are stacked vertically to make it easier to compare the effect of differ­
ent base rates . The nontaxonic comparison curves are presented on the right. 
Of course, a difference in base rate produces a difference in the expected 
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with ' xy = .50. 
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1082 P E. MEEHL & L. J. Y0NCE 

correlation between any two variables (see Appendix B, pp. 1120-1121). Ad­
justments were made via factor loadings so nontaxonic comparison samples 
would have comparable expected rii values. Notice that the differences in the 
expected rii values shown here have no obvious effect on the nontaxonic 
curves . 

Effect of Taxon Validity 

The effect of indicator separation on an error-free MAMBAC curve 
with P = .50 and no nuisance covariance for either variable may be seen in 
Fig. 10. These taxonic curves have been centered to make it easier to see the 
attenuation of the taxonic curve peak with lower validity; if they were plot­
ted on a fixed x-axis, their peaks would move to the right with increased 
separation. Taxonic curves become more peaked with increased separation 
and the location of the peak shifts with the mean of the taxonic distribu­
tion, e.g., with a separation of 3 SD the peak is at 1.50. Thus the peak of 
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the taxonic curve is influenced by indicator validity as well as by the base 
rate . 

Fig. 11 shows Monte Carlo graphs when taxonic separation is reduced 
to 1.5 SD on each of the four variables (N = 600, P = .50, no nuisance corre­
lation, expected r;i = .36). (See also Fig. 14, which shows samples with vari­
ous validities for the four variables in addition to nuisance covariance.) The 
nontaxonic curves with comparable correlation are clearly nontaxonic , but 
curves in taxonic samples may also look nontaxonic, e.g., the second curve 
in the fifth taxonic panel. Obviously, having more variables is helpful when 
validities are reduced, and all other conditions will have to be optimal if la­
tent taxonicity is to be detected with low separations. 

We recommend choosing variables with more validity rather than relying 
on the other factors being optimal; however, we plan to investigate the use 
of consistency tests to help in cases of low validity. For instance, it may be 
possible to use estimates derived from the data to predict the correlation due 
to taxonicity (when there is no nuisance covariance) and compare that with 
the observed correlation. It may be that this will help distinguish the taxonic 
from nontaxonic situation (because the estimates used to predict r ii will be 
invalid if the underlying structure is nontaxonic). Additionally, we hope even­
tually to rigorize the decision process, perhaps by fitting a polynomial, e.g., 
a quartic, to the data and setting up criteria of taxonicity based on the poly­
nomial 's coefficients. 

Effect of Nuisance Covariance 

Nuisance covariance is correlation between the variables within the 
complement, the taxon, or both groups. Ideally, we want variables that are 
uncorrelated within each subgroup (although, of course, they will be corre­
lated for the total, combined group). Increasing nuisance covariance flattens 
the MAMBAC curve progressively. Fig. 12 shows the effect of nuisance co­
variance on error-free MAMBAC curves with P =.50 and 2 SD separation on 
both variables. 

Monte Carlo samples were generated with factor loadings added to vari­
ables in the taxon and complement groups to produce nuisance covariance. 
MAMBAC curves from those samples are shown in Fig. 13 . Nuisance covari­
ance (in the amount used here) is often detrimental to the taxonic MAM­
BAC curves . Here again, it is very helpful to have more than two variables 
so that more curves can be obtained. On the other hand, the nontaxonic 
samples with comparable expected r;i values still produce clearly nontaxonic 
MAMBAC curves; the investigator should not be misled into thinking the un­
derlying situation is taxonic when it is dimensional. 

When several indicators are available, it may be feasible to estimate nui­
sance covariance "directly" by identifying high-confidence cases, e.g., em­
ploying three indicators x, y, z dichotomously, finding the + + + and 
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- patterns, and then correlating other indicators , e.g., u, v, within 
those groups. Generalizing MAMBAC for situations of nonnegligible nui­
sance covariance is planned for presentation in a subsequent publication. 
Psychologists may be reassured by noting how hard we usually work in the 
"soft" areas, e.g. , psychopathology, in an effort to raise correlations to levels 
above those for which the MAMBAC procedure is fairly robust under depar­
tures from the idealization. When candidate indicators are carefully selected 

nuisance covariance 
(taxonic si tuations) 

correlation 
(nontaxonic situations) 

'\.. .// 
.50 " . 

'"-........ _ // 
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FIG. 12. MAMBAC error-free curves for various amounts of nuisance covariance (labeled 
on the left). The dish-shaped curves for nontaxonic situations with comparable amounts of cor­
rection between the variables are labeled on the right. 

for qualitative diversity, e.g., an MMPI schizotypal score, a SADS interview, 
the SPEM eye-tracking anomaly, dysdiadochokinesia-a diversity strongly 
desirable on theoretical grounds, apart from the auxiliary statistical conjecture 
of MAMBAC-there is no reason why they should be appreciably correlated 
within the complement class (" normals") or markedly within the taxon (al-
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though, of course, they will be correlated within the mixed distribution). 
Even different aspects of "the same" basic phenomenon may be only weakly 
correlated, e.g., intrusive saccades and low pursuit on SPEM correlate r=5 .20 
in schizophrenia. While nuisance covariance is often troublesome when the 
measures are psychometric, e.g., two MMPI scores, here the investigator has 
item-analytic procedures available to reduce it, sacrificing some scale length 
(and hence some validity) to hold down nuisance correlation. It should usu­
ally be possible to set reasonable bounds on within-category correlations by 
correlating within crude fallible diagnostic groups, e.g., diagnosed schizo­
phrenes in remission, compensated MZ twins of schizophrenes, "normals" 
with no family history or even borderline MMPI profile. 7 

Fairly direct estimates of nuisance correlation are usually available via 
conventional nontaxometric methods despite the lack of a Gold Standard Cri­
terion. Example: Suppose the conjectured latent taxon is schizotaxia, a subtle 
neurological disorder predisposing to schizophrenia but leading to the florid 
diagnosable disease picture in only a minority of cases (Meehl, 1962, 1989, 
1990c, 1990d). We compute pairwise correlations for candidate indicators, 
e.g., MMPI schizotypy score, a good SPEM anomaly measure, interview rat­
ing, P50 evoked potential, dysdiadochokinesia, among high-certainty schizo­
phrenes in remission and among their (clinically well) MZ twins. Controls 
are chosen for clear family history, no mental disorder (any diagnosis!), and 
no MMPI elevations. We look for negligible correlations between the candi­
date indicators in all these groups. 

Suppose such careful inclusion/exclusion screening is unfeasible. Setting 
safe upper bounds on the taxon rate among crudely defined "normals" and 
on the false positive rate among "presumed schizotypes," we enter the table 
(Appendix B, pp. 1120-1121) to estimate how much correlation can be non­
nuisance-generated by taxonic mixture . The point about such rough estimates 
is that they can provide a near guarantee that the nuisance correlation-not 
precisely estimated-is small enough to rely on robustness under departures 
from the idealization. "Small enough is good enough" for our purposes . We 
rely on philosopher Herbert Feigl's advice to social scientists, "Don't cut 
butter with a razor." 

Combined Effects of Reduced Validities and Nuisance Covariance 

The combined effects of nuisance covariance and various validities (all 2 
SD separations or less) for four variables may be seen in Fig . 14. The taxonic 
samples used in these tables were generated to provide a deliberately difficult 
test for detecting taxonicity. Again, the value of multiple variables and large 

'Caveat: For this context of discovery purpose, it is not safe to treat " miscellaneous non­
schizotypal psychiatric patients" as the complement group, because there are good theoretical 
and empirical grounds for expecting that a nonnegligible fraction of these patients are unrecog­
nized schizotypes (cf. Meehl, 1973a). 
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samples is obvious. Curves from the taxonic samples are not always clearly 
taxonic, and some individual curves look clearly nontaxonic; but with four 
continuous variables, N = 600, and P =.50, none of the nontaxonic samples 
we have examined (see also Appendix C, pp. 1122-1151) should mislead an 
investigator. 

Dichotomous Output Va riables 

Some very preliminary tests (looking at only one output curve per 
sample) have been done using dichotomized output variables. While MAM­
BAC usually produced peaked curves for the taxonic situations and dish­
shaped curves for nontaxonic samples, there were a few misleading curves 
for each latent situation. We have not yet done enough testing to recommend 
confidently this procedure with dichotomous variables . 

ESTIMATING THE BASE RATE WITH MAMBAC 
Theoretically, as the cut moves upward, demarcating the extreme high 

tail of the input distribution, the hit rate above, i.e ., h. , the proportion of 
cases that we label as taxon members who truly are taxon members, ap­
proaches 1. With large samples of real data, it will actually equal 1, since 
there is a cut above which no complement cases lie. (If, in rare instances, 
one or two outliers from the complement group should happen to fall above 
the taxon group, no harm will be done.) Asymptotically, the proportion of 
hits below the cut, i .e., hb , the proportion of cases that we label as comple­
ment members who truly are complement members, approaches the propor­
tion of the complement class, Q , in the entire group. Thus, for a cut at the 
high end we can infer the asymptotic values h. -+ 1, hb-+ Q, and write 

H i[dy(x) ] == (hb + h, - 1) · separation y == Q · (j/1 - jiJ 

Similarly, for a cut at the low end, as hb-+ 1, h. -+ P, we can write 

Lo[dy(x)] == (hb + h, - 1) · separation y == P · (j/1 - Ycl 

(see Appendix A, pp. 1111-1119, for proofs of these theorems). 
When the MAMBAC graphs indicate that the underlying data structure 

i~ taxonic, the taxon base rate P can be estimated using the ratio R Hi /Lo of 
dy(x) values computed at the low and high ends of the distribution of an in­
put variable . For smaller samples, the fact that there are a few cases above 
the cut at the high end and below the cut at the low end may make a differ­
ence when we use the MAMBAC values as estimates of P and Q, so we 
multiply by the appropriate numbers of cases to correct for that. (More de­
tailed explanation is given in Appendix A, pp. 1111-1119.) Thus we esti­
mate the base rate P by 

Hi[dy(x)] 

u,[dy(x) ] 

Q 
p 
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where Lo[dy(x)] is the MAMBAC value we have calculated at the low end of 
the input curve (at the first cut) , 8 

LoNa is the number of cases above that 
first cut, HJdy(x) ] is the MAMBAC value calculated at the high end of the 
input curve (at the last cut) , and HiNb is the number of cases below that last 
cut. (Note that the other MAMBAC values used to plot the graph are ig­
nored; they are not used in these calculations.) Then 

and our base-rate estimate is 

1-P 
R =-­

P 

- 1 - -P = -- and Q 1 - P 
R + 1 

PROCEDURE EstimateBaseRate 

( * It is helpful to have recorded the numbers of cases above and below each cut when 
the MAMBAC values were calculated; these numbers could be saved in an output 
file on a computer or simply recorded on a tabulation sheet *) 

FOR each input/output combination 

Read MAMBAC_jow; Read nAbove at this low-end cut; 
Read MAMBAC_high; Read nBelow at this high-end cut; 

R: = (nBelow[high] / nAbove[low]) * (MAMBAC[high] / MAMBAC[low]); 

(* i.e. , R = nBelow at the high cut/ nAbove at the low cut 
x MAMBAC at high end/ MAMBAC at low end*) 

estimate_P : = 1 / (R + 1); 

END (* for each input/output combination-:.); 

estimate_P : =average over estimates from all in/out combinations; 

END EstimateBaseRate 

FIG. 15. Pseudocode for MAMBAC base-rate estimate 

With four quantitative variables, we can get 12 [ = 2 C J, each indicator 

pair used bidirectionally] estimates of P from a sample, one for each in­
put/output combination. We average these 12 estimates to get a mean P for 
the sample. The P values in Table 1 were based on the lowest and highest 

' If MAMBAC cuts were made on the basis of one case at a time, e .g., as illustrated in Fig. 2 ., 
the "first" and " last" MAMBAC values should be ones chosen about 15 cases in from the bot­
tom and top of the input curve. In our experience, that should provide enough stability to get 
an accurate base-rate estimate. 
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abscissa cuts on the input distributions. 9 Notice that it is possible to get 
negative estimates when the base rate is small (Table 1, P = .10, N = 300, 
sample 24). This happens more frequently for estimates based on single 
input/output combinations; this may be seen in tables for the individual 
samples in Appendix E (see especially configurations A3-10-20 and A6-10-
20, pp. 1170 and 1172). We did not exclude negative or extreme parameter 
estimates throughout this article, but it might be rational for a researcher to 
do so. Although the averaged base-rate estimates in Table 1 may seem not so 
bad, estimates of subsequent parameters depend on the base-rate estimate 
and on each other, the result being propagation of error when clearly impos­
sible values are carried along. (To see how the averaged P may improve, the 
interested reader may recalculate means across input/output combinations for 
Monte Carlo samples, e.g., sample A3-10-20.24 in Appendix E, p. 1171 , 
omitting the negative estimates.) 

When the base rate is small, there may be a slight bias toward overesti­
mation of the base rate. This effect was greater when we used decile cuts to 
make estimations (for true P = .10 and N = 300, mean P = .14, SD = .05 over 
25 samples; for P = .10 and N = 600, mean P = .16, SD = .03) . We surmise it 
is due to the impurity of the cases at the top cut on a distribution; they are 
not exclusively taxon members as is required for a correct base-rate estimate. 
The bias is less, if there at all, when abscissa cuts are used, probably because 
that way of cutting takes one farther out on the distribution, hence the cases 
being used are more likely to be all taxon members. (We are considering try­
ing an iterative procedure on taxon rates of inferred latent intervals to see 
whether the slight upward bias of P for low base rates is correctable. A sim­
pler crude solution may be to reduce all low P values by a fixed "expected" 
bias ll.P. We have investigated various combinations, such as the relationship 
between error and standard deviation of the 12 P estimates, but have as yet 
been unable to discern any orderliness that would be helpful to researchers 
assessing the bias of their estimates.) 

It is important to note that with a base rate of .50 the MAMBAC P by 
itself does not say anything about taxonicity; it is imperative to look at the 
MAMBAC graphs as well. A nontaxonic sample routinely gives a "base-rate" 
estimate of about .50 (see Appendix F, p. 1186); but if the latent structure 
is dimensional, good MAMBAC curves will be symmetrically dish-shaped. 
Only if the MAMBAC graph is peaked near the middle and the estimated 
base rate is about .50 may one infer a taxon with that base rate. 

In our Monte Carlo tests, neither nuisance covariance nor less separa­
tion on the variables seemed to affect the MAMBAC base-rate estimations 
(it would be interesting to correlate the goodness of a taxonic curve with the 

' The base-rate estimations for all of the input/output combinations for all samples may be found 
in Appendix E (pp. 1157-1185). 



TABLE 1 
MAMBAC EsTIMATES OF BASE RATE 

Sample Configuration 

True Base Rate: P= .50 P= .25 p = .10 

A112-503-204 A2-50-20 A3-50-20 A6-50-20 A3-50-15 A6-50-15 N3-50-20 N6-50-20 D3-50-v1 D6-50-v1A3-25-20 A6-25-20 A3-10-20 A6-10-20 
P SD P SD P SD P SD P SD P SD P SD P SD P SD P SD P SD P SD P SD P SD 

.51 .08 
2 .51 .14 
3 .55 .06 
4 .49 .04 
5 .48 .08 
6 .50 .07 
7 .51 .08 
8 .49 .07 
9 .45 .06 

10 .46 .08 
11 .51 .09 
12 .49 .05 
13 .46 .07 
14 .52 .04 
15 .56 .15 
16 .54 .06 
17 .46 .07 
18 .45 .07 
19 .52 .04 
20 .55 .09 

.52 .04 

.53 .05 

.50 .08 

.50 .04 

.51 .05 

.4 7 .09 

.50 .06 

.57 .08 

.50 .08 

.50 .04 

.44 .10 

.51 .08 

.49 .07 

.54 .06 

.48 .08 

.51 .09 

.41 .10 

.50 .05 

.51 .09 

.5 1 .05 

.51 .08 

.48 .08 

.52 .06 

.54 .07 

.51 .06 

.48 .05 

.47 .07 

.49 .07 

.56 .11 

.50 .06 

.49 .06 

.50 .05 

.51 .07 

.54 .11 

.52 .06 

.49 .07 

.54 .09 

.51 .07 

.47 .05 

.49 .07 

.49 .06 

.53 .06 

.52 .05 

.51 .07 

.47 .05 

.52 .09 

.52 .09 

.50 .09 

.51 .06 

.51 .07 

.51 .05 

.53 .04 

.47 .07 

.52 .05 

.48 .07 

.52 .06 

.51 .08 

.56 .06 

.51 .05 

.53 .11 

.49 .12 

.52 .10 

.49 .09 

.51 .08 

.50 .11 

.45 .11 

.48 .05 

.52 .13 

.56 .09 

.45 .10 

.50 .15 

.49 .11 

.53 .11 

.56 .08 
.51 .11 .50 .08 
.49 .09 .56 .08 
.44 .08 .54 .14 
.53 .10 .56 .07 
.49 .14 .50 .08 
.56 .11 
.52 .07 
.47 .20 
.51 .14 
.53 .09 
.52 .11 
.54 .11 
.46 .11 

.49 .11 

.50 .13 

.55 .08 

.48 .11 

.56 .13 

.53 .08 

.49 .12 

.52 .07 

.52 .05 

.51 .04 

.47 .06 

.46 .03 

.46 .04 

.53 .05 

.54 .06 

.48 .06 

.50 .07 

.51 .04 

.49 .05 

.53 .06 

.49 .06 

.53 .09 

.50 .07 

.51 .04 

.52 .04 

.52 .05 

.45 .06 

.54 .07 

.49 .05 .51 .03 .52 .07 .27 .08 

.51 .05 .48 .09 .49 .05 .24 .05 

.5 1 .05 .47 .07 .51 .04 .27 .11 

.50 .05 .55 .07 .5 1 .05 .21 .06 

.47 .05 .55 .09 .49 .04 .17 .15 

.51 .06 .54 .06 .52 .04 .23 .10 

.51 .06 .49 .07 .48 .05 .20 .09 

.52 .05 .52 .07 .46 .12 .26 .13 

.53 .05 .46 .10 .48 .05 .26 .08 

.49 .04 .45 .06 .48 .08 .26 .05 

.48 .06 .47 .06 .54 .05 .29 .06 

.50 .07 .50 .05 .51 .06 .25 .07 

.50 .06 .52 .04 .54 .07 .25 .09 

.50 .05 .47 .08 .51 .09 .22 .06 

.53 .04 .51 .06 .50 .08 .22 .09 

.49 .05 .52 .06 .49 .07 .26 .05 

.52 .04 .48 .05 .46 .11 .20 .07 

.53 .04 .46 .09 .55 .05 .29 .07 

.4 7 .05 .51 .07 .48 .08 .18 .07 

.50 .07 .44 .07 .49 .05 .29 .09 

(continued on next page) 

.26 .10 

.25 .09 

.28 .06 

.25 .08 

.22 .11 

.28 .08 

.24 .07 

.29 .06 

.25 .10 

.27 .10 

.27 .05 

.30 .08 

.25 .08 

.25 .10 

.25 .06 

.26 .05 

.23 .06 

.24 .06 

.26 .09 

.31 .08 

.18 .13 

.05 .18 

.07 .16 

.17 .09 

.13 .10 

.15 .13 

.07 .16 

.08 .11 

.12 .18 

.24 .15 

.15 .10 

.11 .13 

.07 .11 

.05 .12 

.07 .14 

.05 .10 

.13 .13 

.12 .10 

.14 .17 

.15 .10 

.11 .14 

.11 .13 

.13 .05 

.10 .07 

.14 .13 

.12 .10 

.14 .19 

.11 .08 

.09 .10 

.08 .15 
.22 .16 .10 .11 
.09 .12 .16 .13 
.07 .11 .11 .08 
.21 .11 .12 .12 
.15 .13 .07 .14 

1'N samples have no nuisance covariance; 'N' and 'D' samples have nuisance covariance. 2This number multiplied by 100 equals the sample size: 
100, 200, 300, or 600. 3Mu!tiplied by .01 gives the true base rate of the sample (also indicated in the line above asP values): .50, .25, or .10. 4 Usu­
ally, multiplied by .1 gives the amount of separation on each variable: 2.0 SD or 1.5 SD; ' v1' samples have different separations on the four vari­
ables. 



TABLE 1 (CoNT'n) 
MAMBAC EsTIMATEs oF BAsE RATE 

Sample Configuration 

True Base Rate: P = .50 P = .25 P = .10 

A112-503-204 A2-50-20 A3-50-20 A6-50-20 A3-50-15 A6-50-15 N3-50-20 N6-50-20 D3-50-v1 D6-50-v1A3-25-20 A6-25-20 A3-10-20 A6-10-20 
f> SD f> SD f> SD f> SD f> SD f> SD f> SD f> SD f> SD f> SD f> SD f> SD f> SD f> SD 

21 .55 .09 
22 .53 .09 
23 .48 .06 
24 .50 .06 
25 .49 .04 

.50 .06 

.51 .06 

.51 .10 

.49 .07 

.49 .03 

.52 .08 

.53 .07 

.57 .10 

.47 .08 

.45 .06 

.53 .05 

.48 .08 

.50 .07 

.47 .07 

.49 .06 

.48 .08 

.53 .13 

.57 .09 

.56 .09 

.45 .09 

.54 .07 

.54 .18 

.51 .08 

.52 .09 

.52 .09 

Means and standard deviations over 25 samples per configuration: 
p .50 .03 .50 .03 .51 .03 .51 .02 .50 .03 .52 .03 

lf>-PI .03 .02 .02 .02 .02 .02 .02 .0 1 .03 .02 .03 .02 
f>_p .00 .03 .00 .03 .01 .03 .01 .02 .00 .03 .02 .03 

.50 .03 

.51 .07 

.48 .05 

.49 .03 

.48 .06 

.50 .02 

.02 .01 

.00 .02 

.47 .05 

.51 .04 

.51 .04 

.50 .05 

.50 .03 

.50 .02 

.01 .01 

.00 .02 

.57 .08 .46 .06 .26 .12 

.54 .07 .55 .04 .27 .09 

.47 .08 .59 .11 .32 .07 

.52 .09 .48 .09 .31 .07 

.48 .06 .49 .07 .28 .11 

.50 .03 .50 .03 .25 .04 

.03 .02 .02 .02 .03 .02 

.00 .03 .00 .03 .00 .04 

.22 .08 .10 .15 

.24 .16 .12 .11 

.27 .08 .02 .37 

.26 .07 -.03 .30 

.26 .07 .04 .17 

.26 .02 

.02 .01 

.01 .02 

.11 .06 

.05 .04 

.01 .06 

.14 .07 

.11 .10 

.15 .11 

.18 .09 

.09 .10 

.12 .03 

.03 .02 

.02 .03 
1'N samples have no nuisance covariance; 'N' and 'D' samples have nuisance covariance. 2This number multiplied by 100 equals the sample size: 
100, 200, 300, or 600. 3Multiplied by .01 gives the true base rate of the sample (also indicated in the line above asP values): .50, .25, or .10. 4Usu­
ally, multiplied by .1 gives the amount of separation on each variable: 2.0 SD or 1.5 SD; 'v1' samples have different separations on the four vari­
ables. 
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accuracy of the base-rate estimate). When the graphs are unclear and P""' .50, 
it may not be possible to answer the taxonic/nontaxonic question using only 
those two factors. 

If the estimated base rate is notably less than about .40, that fact by it­
self corroborates 10 a conjecture of taxonicity. Fig. 16 shows the distributions 
of pooled P values (over 12 input/output combinations per sample) for all the 
Monte Carlo samples. The distributions are rather similar for nontaxonic 
samples and all the taxonic samples with a true base rate of .50; samples 
with true base rates of .25 or .10 give distinctly different P values. 
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FrG. 16. Distributions of MAMBAC base-rate estimates (based on first and last abscissa 
cuts) for all of the Monte Carlo samples 

10 We use ICorroboratel as does Popper, "pass a (risky) test." Inductivists may substitute ICon­
firffil, lsupporil, I tend to provel. Of course these epistemological terms cannot be taken to 
mean deduce (necessarily) in empirical research. 
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EsTIMATING VALIDITY (SEPARATION) 

Once we have P (it being a pooled estimate based on as many variables 
as we have available), 1l we can solve for the taxonic separation on the out­
put variable. For each pair of variables that is available, x (considered as the 
input variable in the following equations) and y (considered as the output 
variable), we already have 

Hi[dy(x)] 

Lo[dy(x)] 

Q · separation on y 

P · separation on y 

Q · (y,- Jcl 

p. (y,- y,) 

[1] 

[2] 

which we used (with the addition of a bias adjustment) to obtain P. Now we 
can solve for the separation, doing it at both the high and low ends of an in­
put distribution, 

sepy 
Hi[J;,(x)] 

Using the high end [3] 
Q 

(Q = 1- P) 

sepy 
Lo[J;,(x)] 

Using the low end [4] p 

Again, we make an adjustment for bias when using the MAMBAC values as 
estimates of P and Q, and the corrected separation estimates, computed in­
dependently at the two extremes, are 

at the high end: 

at the low end: 

11 We have not yet done Monte Carlo runs to see which P is better to _use in calculating esti­
mates of the separation when multiple indicators are used. There is one P estimated for a given 
input/output combinatiop; if MAMBAC is run bidirectionally on. those indicators, one might use 
the average of the two P estimates obtained; or one might use P pooled over estimates from all 
the variables run bidirectionally. It seems nearly certain that the last would be the most accurate 
estimate, hence the best one to u.se. That is what was used for Monte Carlo tests reported here ; 
we used the average of the 12 P estimates we got from running MAMBAC bidirectionally on 
four continuous indicators. 
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These estimate the same latent value , so we average them, 

seh = Cv, - Ycl = t;, (1-Iiseh + Losehl [5] 

As one would expect, taxonic separation is estimated better with larger 
sample sizes, larger base rates, and no nuisance covariance. Monte Carlo re-

PROCEDURE EstimateSeparation 

(,, It is helpful to have an output file of MAMBAC values and the numbers of cases 
above and below the cut when each was calculated; this file could be created 
when MAMBAC values are obtained for plotting the MAMBAC curve *) 

FOR each input/output combination 

Read MAMBAC_Iow; Read nAbove at this low-end cut; 
Read MAMBAC_ high; Read nBelow at this high-end cut; 
( * estimate_P has been calculated previously *) 

sep_high: = nBelow[high] / (N '' (1- estimate_P) '' MAMBAC[high]; 

(,,i.e. , nBelow at the high cut/ (N x Q) x MAMBAC at high end*) 

sep_low: = nAbove[low] / (N ,, estimate_P) '' MAMBAC[low]; 

(''i.e., nAbove at the low cut/ (N x P) x MAMBAC at low end'') 

estimate_sep : = (sep_high + sep_low) / 2; 

END (* for each input/output combination ,·,) ; 

END EstimateSeparation. 

FIG. 17. Pseudocode for MAMBAC validity estimation 

suits for 14 sample configurations are shown in Table 2 (estimates for all in­
put/output combinations for each taxonic sample may be found in Appendix 
G, pp. 1187-1215). There is variability in the accuracy of the estimates of 
separation for all the parametric configurations presented in Table 2, but two 
generalizations may be made: nuisance covariance produces overestimation of 
taxonic separation, and a low base rate leads to underestimation of the sepa­
ration. Development of procedures to assess and correct bias in separation 
estimates due to these two influences has yet to be done. 

Unless the MAMBAC curve suggests taxonicity, one would not reach 
this step. But, for the curious, the result of trying to estimate taxonic separa­
tion when the true latent situation is factorial depends on the amount of 
correlation between variables (see Appendix H, p. 1216). Estimated "separa­
tions" (averaged over 25 samples each) ranged from 1.01 to 2.17 for our 
nontaxonic samples. The correlation between those estimates and the ex­
pected amount of correlation between variables is .89 (the comparable cor­
relation for taxonic samples is .83). 



TAXOMETRlC ANALYSIS: I. MAMBAC 1097 

EsTIMATING LATENT MEANS 

Given that we have reason to infer underlying taxomClty from the 
MAMBAC curve(s) and now have estimates of the base rate and the separa­
tions, we can estimate the means of the complement and taxon groups that 
make up the manifest distribution. We have another linear equation: 

[6] 

P and Q are known by our estimation of P, and the separation has been esti­
mated as described above. Now we can solve the system of equations, 

latent known 

y,- Yc sepy From [5], inferred 

latent known 

Py, + Qyc y From [6], observed 

to get y, and Yc. 

PROCEDURE EstimateComplement&TaxonMeans 

FOR each input/output combination 

( * estimate_ P has been calculated previously ,, ) 
( * estimate_sep has been calculated previously *) 

variableMean : =observed mean of output variable distribution; 

estimate_CompMean : = variableMean - estimate_P * estimate_sep; 

estimate_TaxonMean : = estimate_CompMean + estimate_sep; 

END (* for each input/output combination *); 

END EstimateComplement&TaxonMeans. 

FIG. 18. Pseudocode for MAMBAC estimation of complement and taxon means 

[7] 

[8] 

Estimated means for Monte Carlo samples are shown in Table 3 (esti­
mations for the complement group) and Table 4 (estimations for the taxon 
group). Estimates for all the input/output combinations for the taxonic sam­
ples may be found in Appendix I (pp. 1217-1273) . Smaller samples (N = 300 
here) with low base rates (P = .1 0 here) estimate complement means ade­
quately, but they may do a poor job of estimating taxon means (see Table 4, 
configuration A3-10-20). There is great variability in results from the indi­
vidual samples with that configuration (see Appendix I, pp. 1217-1273). 
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TABLE 2 
MAMBAC ESTIMATES OF SEPARATION 

Expected separation:* 2.00 SD 1.50 SD 

Sample s€p SD 

2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

2.01 .26 
1.48 .43 
1.75 .22 
1.89 .30 
1.85 .12 
1.94 .19 
1.71 .36 
1.97 .23 
1.84 .25 
1.89 .22 
1.78 .20 
2.10 .20 
2 .15 .19 
2.07 .3.3 
1.54 .27 
1.90 .37 
1. 90 .36 
1.95 .40 
1.66 .22 
1.56 .28 
1.62 .41 
1.80 .2.3 
1.86 .25 
1.95 .30 
2.10 .22 

A2-50-20 
sep SD 

2.02 .23 
1.97 .35 
2.14 .33 
2.23 .13 
2.26 .20 
1.93 .33 
2.21 .27 
1.99 .30 
1.92 .24 
2.10 .34 
1.92 .27 
1. 97 .46 
2 .03 .26 
1.78 .18 
1.96 .35 
2.00 .20 
1.71 .27 
1.84 .23 
1.96 .34 
2.01 .23 
1.85 .3 7 
1. 98 .32 
1.86 .28 
1.95 .25 
1.96 .32 

A3-50-20 
s€p SD 

1.83 .37 
1.82 .24 
2.09 .22 
1.93 .36 
1.96 .21 
1.97 .26 
2.07 .29 
1.96 .35 
1.83 .36 
2.07 .20 
1.91 .27 
1.85 .26 
1.92 .20 
1.84 .29 
2.03 .41 
2.16 .37 
2.01 .27 
1.93 .36 
2.01 .23 
2.24 .25 
1.94 .33 
2.07 .34 
1.96 .35 
1.93 .37 
2.09 .31 

A6-50-20 
s€p SD 

2.06 .29 
2.06 .20 
2.02 .28 
2.04 .27 
1.91 .29 
2.00 .24 
2.06 .25 
1.97 .23 
1.95 .19 
1.87 .33 
2.05 .26 
2.20 .40 
2.00 .23 
2.12 .32 
2.05 .32 
2.03 .27 
1.97 .28 
2.18 .21 
2.03 .37 
1.99 .27 
1.98 .23 
1.93 .22 
1.94 .28 
1.90 .27 
2.08 .18 

A3-50-15 
s€p SD 

1.42 .29 
1.40 .18 
1.44 .22 
1.44 .20 
1.32 .31 
1.63 .18 
1.61 .31 
1.26 .43 
1.51 .32 
1.34 .23 
1.24 .23 
1.33 .25 
1.38 .22 
1.42 .24 
1.36 .49 
1.25 .26 
1.38 .30 
1.31 .34 
1.44 .28 
1.52 .28 
1.60 .39 
1.25 .26 
1.66 .37 
1.32 .36 
1.47 .33 

Means and standard deviations over 25 samples per configuration: 

sep 1.85 .18 
lsep-sep l .18 .14 
sep-sep -.15 .18 

1.98 .13 
.10 .09 

-.02 .13 

1.98 .11 
.09 .06 

- .02 .11 

2.02 .08 
.06 .05 

-.02 .08 

1.41 .12 
.13 .07 

-.09 .12 

A6-50-15 
s€p SD 

1.38 .29 
1.24 .40 
1.4 7 .33 
1.21 .34 
1.54 .36 
1.46 .37 
1.32 .34 
1.33 .20 
1.56 .30 
1.33 .34 
1.69 .25 
1.37 .35 
1.27 .16 
1.63 .25 
1.51 .29 
1.45 .28 
1.35 .4 7 
1.48 .38 
1.49 .27 
1.33 .26 
1.52 .19 
1.46 .27 
1.42 .22 
1.39 .25 
1.33 .28 

1.42 .11 
.12 .08 

-.08 .12 

Sample 

2.00 SD 

N3-50-20 
sep SD 

2.59 .28 
2.71 .35 
2.73 .33 
2.63 .51 
2.80 .40 
2.82 .38 
2.80 .38 
2.56 .35 
2.48 .36 
2.62 .64 
2.26 .34 
2.62 .39 
2.59 .40 
2.41 .34 
2.65 .39 
2.45 .33 
2.57 .32 
2.72 .37 
2.59 .43 
2.60 .39 
2.92 .42 
2.58 .58 
2. 79 .38 
2.46 .51 
2. 76 .30 

2.63 .15 
.63 .15 
.63 .15 

1'N samples have no nuisance covariance; 'N' and 'D' sam~les have nuisance covariance. 2This 
gives the true base rate of the sample: .50, .25, or .10. Usually, multiplied by .1 gives the 
are x = 2.00, y = 1.75, z = 1.50, v = 1.25; the average of these (1.625) was substituted for " true 
used in the generation of the Monte Carlo samples; in fact, the true separation varied from 

This is due in part to propagation of error from allowing impossible values 
such as negative base rate and negative estimates of separation to remain in 
our calculations . Pilot runs indicate substantial correlations (ranging from .45 
to .78 in the A3-10-20 samples) between absolute error in estimates of the 
taxon means and the ratio of the standard deviation of the base-rate esti­
mates to the mean P for each sample. Defining a "bad sample" as one in 
which at least one of the four taxon means is mal-estimated with an absolute 



Configuration 

2.00 SD 

N6-50-20 
sep SD 

2.65 .43 
2.72 .32 
2.42 .57 
2. 73 .47 
2.69 .52 
2.99 .49 
2.87 .47 
2.93 .49 
2.66 .32 
2.73 .41 
2.71 .54 
2.63 .50 
2.87 .37 
2. 77 .39 
2. 70 .46 
2.83 .47 
2.87 .45 
2.61 .40 
2.76 .41 
3.03 .44 
2.50 .64 
2.66 .46 
2.67 .46 
2.64 .48 
2.67 .32 

2.73 .14 
.73 .14 
.73 .14 
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TABLE 2 (CONT'o) 
MAMBAC EsTIMATEs oF SEPARATION 
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x: 2.00 SD, y : 1.75 SD 
z: 1.50 SD, v: 1.25 SD 

2.00 SD 

D3-50-vl 
sep SD 

2.09 .52 
2.27 . 77 
2 .33 . 76 
2.15 .56 
2.49 .76 
2.40 . 70 
2.23 .54 
2.22 .64 
2.21 .57 
1.84 .61 
2.20 .47 
1. 99 .68 
2.27 .54 
2.17 .56 
2.29 .62 
2.23 .59 
2.33 .50 
2.23 .53 
2.09 .42 
2.40 .65 
2.11 .53 
1. 94 .55 
1. 77 .60 
2.05 .61 
2.20 .47 

2.18 .17 
.55 .17 
.55 .17 

D6-50-vl 
sep SD 

2.07 .63 
2.27 .51 
2.31 .66 
2.48 .52 
2.40 .77 
2.29 .69 
2.20 .79 
2.11 .80 
2.38 . 71 
2.38 .74 
2.37 .66 
2.64 . 79 
2.38 .67 
2.23 .64 
2.22 . 77 
2 .35 .67 
2.34 .91 
2.23 .59 
2.54 .74 
2.17 .77 
2.18 .64 
2.45 .54 
2.36 .61 
2.45 .55 
2.11 .52 

2.32 .14 
.69 .14 
.69 .14 

A3-25-20 
sep SD 

1.70 .21 
1.93 .32 
1. 77 .32 
1.90 .44 
1.86 .82 
1.89 .60 
1.95 .53 
1.78 .60 
1.85 .36 
2.04 .36 
2.10 .29 
1.68 .37 
1.93 .46 
1.82 .27 
1.90 .53 
2.12 .39 
1.85 .58 
1. 91 .25 
1.81 .44 
1.95 .31 
1.60 .33 
1.76 .35 
1.94 .28 
1.73 .36 
1.83 .62 

1.86 .12 
.16 .09 

- .14 .12 

A6-25-20 
sep SD 

2.02 .48 
1.78 .41 
1.86 .34 
1.91 .35 
1.80 .52 
2.01 .37 
1.87 .40 
2.03 .38 
1.76 .39 
1.87 .30 
1.96 .23 
1.99 .34 
2.02 .33 
2.00 .54 
2.05 .32 
1.94 .21 
1.94 .30 
1.96 .38 
1.84 .44 
1.99 .37 
1.70 .49 
1.85 .54 
1.91 .30 
1.90 .28 
2.00 .31 

A3-10-20 
sep SD 

1.75 .58 
1.44 1.49 
1.42 1.38 
1.69 .57 
1.53 . 77 
1.4 7 .58 
1.45 1.43 
1.68 1.20 
1.54 .98 
1.39 .35 
1.49 .54 
1.75 1.26 
1.63 1.35 
1.42 1.38 
1.65 1.49 
1.21 .41 
1.52 .92 
1.60 1.32 
1.42 .40 
1.33 .65 
1.50 1.25 
1.68 . 79 
4.38 8.09 

- 0.25 3. 74 
1.80 3.23 

A6-10-20 
sep SD 

1.81 1.68 
1.88 1.04 
1.81 . 77 
1.81 1.06 
1.99 .68 
1.58 1.09 
1.70 .86 
1.70 .39 
1.84 .94 
1.56 .62 
1.62 . 75 
1.87 1.20 
1.48 .59 
1.98 1.19 
1.30 1.05 
1.68 .84 
1.88 .94 
1. 77 .58 
1.87 .97 
2.18 2.18 
1.67 .44 
2.00 .98 
1.75 .78 
1.76 .30 
1.61 .98 

1.92 .09 1.58 .68 1.76 .18 
.16 
.18 

.09 .08 .61 .52 .25 
- .08 .09 - .42 .68 -.24 

number multiplied by 100 equals the sample size: 100, 200, 300, or 600. 3Multiplied by .01 
amount of separation on each variable: 2.0 SD or 1.5 SD. In 'vl' samples expected separations 
separation" to get values for lsep-sep l and sep-sep. *The expected amount of separation was 
sample to sample, and those true separations may be found in Appendix G, pp. 1187-1215. 

error ~ 1 SD, cutting the ?-dispersion consistency test at SD! ~ 1.50 iden­
P 

tifies 85% of the bad samples at the expense of only 8% of acceptable ones, 
an encouraging preliminary result . 

Another possibility for estimating taxon means relies on the fact that for 
small P and a cusp at the high extreme of the MAMBAC graph a sizeable 
subsample can be defined (say, all cases below the input variable's median) 



Configuration 
X 

Expected Mean: .00 
Al-50-201 .05 
A2-50-20 .00 
A3-50-20 - .01 
A6-50-20 - .03 

Base Rates = .25 or .10 

A3-25-20 .06 
A6-25-20 .00 
A3-10-20 .04 
A6-10-20 -.02 

Nuisance Covariance 
Factor loadings on 

N3-50-20 - .39 
N6-50-20 - .49 

Pooled Estimates 
SD y 

.00 
.14 .07 
.12 - .04 
.12 - .04 
.13 - .01 

.13 .05 

.10 .04 

.13 .02 

.10 .01 

x = . 7 0 , y 

.16 - .34 

.10 - .41 
Taxonic Separation = 1.5 SD 

A3-50-15 .03 
A6-50-15 .03 

Nuisance Covariance + 

.14 .06 

.11 .05 

SD z 

.00 
.15 .05 
.13 .02 
.14 - .01 
.10 .00 

.13 .05 

.07 .01 

.12 .04 

.10 .01 

= .50, * « . 
.15 - .26 
.11 - .34 

.12 .03 

.13 .00 
Taxonic Separation 

Factor loadings on x = .70, y 
Separations x = 2.00, y = 1.75 

D3-50-vl - .62 
D6-50-vl - .73 

.15 - .42 

.15 - .52 

= .50, * - . 
, * = 1.50, 
.16 - .26 
.11 - .36 

SD 

.12 

.17 

.11 

.12 

.12 

.10 

.12 

.10 

40, V 
.13 
.11 

.12 

.12 

40, v 

TABLE 3 
MAMBAC ESTIMATIONS OF COMPI 

V 

.00 

.04 

.01 
- .02 
- .02 

.05 

.01 

.03 
- .01 

= .20 
- .19 
- .17 

.06 

.01 

= .20 
» - 1.25 
.16 
.14 

- .05 
- .04 

SD 

.14 

.15 

.09 

.11 

.12 

.09 

.12 

.11 

.13 

.12 

.10 

.11 

.11 

.15 

X 

.02 
- .01 

- .04 
- .02 

.05 
- . 01 

.03 
- .02 

- .42 
- .48 

.02 

.03 

- .61 
- .72 

SD 

.14 

.12 

.13 

.09 

.13 

.09 

.14 

.10 

.16 

.11 

.15 

.11 

.16 

.16 

Algebraic 

y 

.04 
-.02 
-.06 
-.04 

.06 

.03 

.02 

.00 

-.36 
-.40 

.05 

.03 

-.44 
-.54 

SD 

.13 

.14 

.13 

.11 -

.14 

.08 -

.14 

.11 -

.17 -

.12 -

.13 

.12 -

.15 -

.11 -

EMENT MEANS 

Error 
z 

.07 

.04 

.02 

.02 

.02 

.01 

.03 

.01 

.29 

.35 

.03 

.01 

.26 

.36 

SD 

.07 

.12 

.09 

.11 

.09 

.07 

.11 

.08 

.10 

.09 

.09 

.09 

.13 

.14 

V 

.00 

.01 
- .01 
- .03 

.04 

.00 

.03 
- .02 

- .19 
- .18 

.06 

.01 

- .07 
- .07 

SD 

.13 

.14 

.09 

.10 

.16 

.11 

.14 

.13 

.16 

.12 

.11 

.11 

.10 

.13 

X 

.12 

.10 

.12 

.07 

.10 

.08 

.11 

.07 

.42 

.48 

.12 

.09 

.61 

.72 

SD 

.06 

.07 

.08 

.06 

.09 

.06 

.09 

.06 

.16 

.11 

.09 

.07 

.16 

.16 

Absolute Error 

y 

.12 

.10 

.11 

.09 

,13 
,07 

.11 

.08 

.36 

.40 

.11 

.10 

.44 

.54 

SD 

.07 

.09 

.09 

.07 

.09 

.05 

.09 

.07 

.17 

.12 

.08 

.08 

.15 

.11 

z 

.08 

.10 

.07 

.08 

.07 
.06 
.09 
.06 

.29 

.35 

.08 

.07 

.26 

.36 

SD 

.06 

.08 

.06 

.08 

.06 

.04 

.06 

.05 

.10 

.09 

.05 

.06 

.13 

.14 

V 

.11 

.12 

.08 

.08 

.13 

.08 

.11 

.10 

.20 

.18 

.10 

.09 

.10 

.11 

SD 

.08 

.09 

.05 

.06 

.09 

.07 

.09 

.08 

.15 

.10 

.07 

.07 

.07 

.09 

© 

o 

— 
m 
s 
w w 
— 
r1 

7_* 

74 
O 

z n 

See Table 1 notes for explanation of sample configuration codes. 



TABLE 4 
MAMBAC EsTIMATIONs OF TAxoN MEANs 

Configuration Pooled Estimates Algebra ic Error 
x SD y SD z SD v SD x SD y SD z SD v SD 

Expected Mean : 2.00 2 .00 2 .00 2.00 
A1-50-20t 1.91 .21 1.89 .18 1.91 .14 1.91 .14 - .09 .19 - .08 .15 -.08 .11 - .11 .11 
A2-50-20 1.98 .15 2.02 .14 1.95 .13 1.97 .13 -.05 .13 .02 .14 - .04 .1 1 - .02 .14 
A3-50-20 1.94 .16 1.98 .14 1.95 .12 1.95 .13 -.07 .13 -.05 .11 - .04 .11 - .03 .15 
A6-50-20 2.01 .11 2.00 .07 1.98 .08 2.00 .09 .01 .10 - .02 .09 -.01 .08 -.02 .09 

Base Rates = .25 or .10 
A3-25-20 1.89 .17 1. 92 .25 1.91 .21 1.93 .23 -.12 .19 -.07 .22 -.09 .16 -.06 .22 
A6-25-20 1.96 .21 1.86 .19 1.93 .13 1.96 .16 -.04 .18 - .16 .18 -.04 .13 -.04 .13 
A3-10-20 1.27 1.41 1.74 .97 1.54 1.49 1.81 1.88 -.70 1.40 - .37 1.02 - .46 1.50 - .15 1.88 
A6-10-20 1.93 .61 1.66 .47 1.64 .39 1.76 .48 - .08 .57 - .36 .49 - .35 .39 - .27 .42 

Nuisance Covariance 
Factor loadings on x = . 70, y = .50, z = .40, v = .20 

N3-50-20 2.43 .14 2.38 .12 2.30 .14 2.23 .15 
N6-50-20 2.52 .11 2.44 .09 2.37 .10 2.20 .11 

Taxonic Separation = 1.5 SD 
Expected Mean : 1.50 1.50 1.50 1.50 

.42 .13 .37 .10 .29 .10 .21 .16 

.50 .12 .42 .10 .34 .09 .18 .10 

A3-50-15 1.47 .11 1.44 .13 1.47 .12 1.44 .10 - .04 .10 -.06 .11 - .04 .10 -.08 .12 
A6-50-15 1.44 .10 1.42 .12 1.46 .07 1.45 .11 - .07 .12 - .10 .12 - .05 .07 -.06 .12 

Nuisance Covariance+ Taxonic Separation 
Factor loadings on x = . 70, y = .50, z = .40, v = .20 
Separations x = 2.00, y = 1. 75, z = 1.50, v = 1.25 

Expected Mean: 2.00 1. 75 1.50 1.25 
D3-50-v1 2.13 .15 1.92 .14 1.76 .16 1.55 .12 
D6-50-v1 2.22 .14 2.01 .12 1.86 .13 1.53 .10 

.09 .11 .18 .11 .27 .13 .28 .16 

.21 .14 .23 .13 .34 .11 .26 .12 

lSee Table 1 notes for explanation of sample configuration codes. 

Absolute Error 
x SO y SD z SD v SD 

.17 .13 .15 .09 .10 .08 .13 .08 

.10 .10 .12 .07 .09 .08 .10 .10 

.13 .08 .10 .07 .09 .07 .13 .09 

.08 .06 .07 .05 .06 .05 .08 .06 

.18 .13 .18 .14 .14 .11 .17 .16 

.15 .11 .20 .14 .12 .07 .12 .06 

.89 1.27 . 74 . 79 1.04 1.17 1.08 1.54 

.44 .36 .51 .34 .42 .31 .41 .28 

.42 .13 .37 .10 .29 .10 .22 .15 

.50 .12 .42 .10 .34 .09 .19 .09 

.10 .05 .10 .07 .09 .07 .11 .09 

.11 .08 .11 .10 .07 .05 .10 .09 

.12 .08 .19 .09 

.21 .13 .24 .12 
.27 .13 .28 .16 
.34 .11 .26 .12 
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which will be negligibly contaminated with taxon cases and hence provide a 
trustworthy estimate of the complement mean. (In this case it would be esti­
mated by the mean of the output variable cases in that subsample .) We can 
then estimate the taxon mean using Equation [8] alone, bypassing Equation 
[7]. Equation [8] is precise since it is a distribution-free set-theoretical iden­
tity (for the sample). The adequacy of this and other approaches requires 
further Monte Carlo study. But we cannot emphasize strongly enough that 
taxometric research requires large samples, particularly when base rates are 
small. Since the graph shape is trustworthy as a taxon detector, when its 
maximum is a cusp at the upper extreme of the input variable, strongly sug­
gesting a low base rate, the researcher with a small sample is alerted to be 
cautious about taxon mean estimates . 

Nuisance covariance has the biggest predictable effect on accuracy of es­
timations. It leads to overestimation of taxonic means and underestimation 
of the complement means . In Equations [7] and [8] , the numerator determi­
nants solving for unknowns ji, and Yc expand as (Q sepy + y) and (ji -
P sepy), respectively. Since sepy is inflated due to nuisance correlation, the 
former is spuriously raised and the latter spuriously lowered. 

There appears at first to be an anomaly in estimates of the taxon mean 
for x in nuisance covariance samples ('N' configurations in Table 4) and in 
samples with both nuisance covariance and various separations ('D ' configu­
rations in Table 4); in the latter, x has the same factor loading (.70) and the 
same expected separation (2 SD), yet the taxon mean is not overestimated to 
the same extent . This is explained when we remember that the estimates in­
volve x in combination with y, z, and v, all of which have smaller taxonic 
separations which reduce the estimates of separation and, hence, of the tax­
on mean for x. Likewise, the larger separations on x, y, and z increase esti­
mates for v. Interactions between nuisance covariance and validity remain to 
be explored. 

Although the largest errors (.40s and .50s) in Table 3 are irksome, they 
are not as "bad" as they seem. The metric here is expressed in standard 
scores of the latent distributions, whereas the researcher's units will be based 
on the observed standard deviations (the only thing the researcher can 
know!), and the latter will be considerably larger. For example, in the config­
uration with nuisance covariance and N = 600 (N6-50-20 in Table 3), the x-
error in the manifest standard score metric is J;- = .31, less than 1/J SD. 

This error is only slightly larger than the rule of thumb for "coarse group­
ing" (in the old precomputer days) that Karl Pearson showed loses 10% of 
the information. 
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When there is no nuisance covariance, if there were no sampling error 
in the taxon and complement means within defined intervals along the input 
distribution, i.e., if they-mean of taxon members within any x-interval =the 
taxon mean, the observed mean y in an x-interval depends on the ratio of 
taxon members to complement members in the interval. We know this is lit­
erally false (due to random fluctuation), but it is the best estimate. Thus we 
can get the proportions of taxon and complement members in each interval 
from 

In interval Xi: p,;'y, + qJ'Jc = p,;"}, + (1 - p,)Yc = y(x;) 

We solve for Pi in each x-interval, then multiply it by n; (the frequency in 
the interval) to get the taxon frequency n1; . 

This allows us to draw the inferred latent x-curves, and from them we 
can locate the hitmax cut (which will be the place where the complement 
and taxon curves intersect) , compute valid and false positive rates achieved 
by that cut, compute over-all hit rate, get estimates of the variances and ad­
ditional estimates of the means (which will provide consistency tests of those 
previously estimated), and assign subjects to complement or taxon member­
ship. Monte Carlo study of these estimates is planned for future publica­
tions. 

CoNSISTENCY TEsTs AND THE IMPORTANCE oF CoHERENCE 

A core feature of Meehl's coherent cut kinetics method (going back to 
the first technical report, Meehl, 1965) is emphasis on the fundamental im­
portance of consistency tests in taxometric analysis. If the latent structure is 
as conjectured and the inferred numerical values are correct within accept­
able limits of error, then there are formal procedures in which mathematical 
relations between two or more quantitative variables, latent or manifest, ob­
served or inferred, may be expected to obtain, within allowed tolerances. 
There is a tendency for psychologists and statisticians to view such consis­
tency tests as a pleasant adjunct, nice to have if you can get them, merely 
"icing on the psychometric cake." This attitude is mistaken; consistency tests 
are absolutely essential in taxometric analysis in all empirical domains. 

Why is this? The necessity for consistency tests arises from the problem 
of construct validity (Cronbach & Meehl, 1955; Loevinger, 1957; Campbell 
& Fiske, 1959). In simple clear-cut cases of predictive validity , we have avail­
able what some psychometrists have called a "Gold Standard Criterion," and 
the "validity" of a predictor variable (or a composite of such, as in multiple 
regression, linear discriminant function, or actuarial table) is problematic 
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only in the sense of random sampling error, because it does not involve any 
theoretical inference to unobserved states , structures, or events . For example, 
if an aviation psychologist wants to predict which candidates for flight train­
ing will succeed, a stanine score that combines measures of dial reading, 
general intelligence, and emotional stability "does just as well as it does" 
(which in World War II turned out to be very well indeed) . If an educational 
psychologist counts spelling errors in a sample of several thousand sentences 
written by a person in a representative sample of settings, this may be taken 
as a Gold Standard Criterion of real-life spelling ability; and the correlation 
of a multiple-choice hundred-item spelling test with the count from that 
huge sample is a simple case of concurrent validity, the only problem being 
random sampling fluctuation on the criterion side. In organic disease, the pa­
thology and etiology jointly define a disease entity, and a sign or symptom 
has a validity commonly expressed in terms of sensitivity and specificity 
(valid and false positive rates). 

One can divide Gold Standard Criteria into two rough subcategories, 
worthwhile distinguishing for conceptual clearness but not differing apprecia­
bly in their function as validators of a proposed fallible indicator. Sometimes 
a Gold Standard Criterion is definitory , that is, the explicit literal meaning of 
the dimension or category is exemplified by the criterion property. For ex­
ample, general paresis is explicitly defined as a certain kind of cerebral pa­
thology produced by parenchymal infection with Treponema pa!lidum. Certain 
pathognomonic brain changes (such as gross disarrangement of cellular layers 
and free iron in the ganglion cells) conjoined with presence of the spirochete 
in the cortical tissue constitute the explicit operational definition of paretic 
brain state. In organic disease, the nosological entity is defined conjunctively, 
by pathology and etiology, if the latter is known (cf. Meehl, 1973b, pp. 
285-288; 1992, pp . 126-127). For a nonmedical example, if an insurance 
company wants to know whether an insurance agent will sell a lot of insur­
ance, then the remarkably high correlation of the insurance salesman key of 
the Strong Vocational Interest Blank with dollars sold constitutes concurrent 
(and, for selection of personnel in the future , predictive) validity against the 
Gold Standard Criterion of sales. In the second subset, more common in 
medicine, indicators are not definitory but are nevertheless two-way patho­
gnomonic, i.e. , perfectly valid as both an inclusion and an exclusion test, 
with sensitivity = specificity = 1. Thus, a positive spinal fluid Wasserman and 
first zone colloidal gold curve, while not definitory of paresis , are jointly pa­
thognomonic and therefore this two-sign configuration counts as a Gold Stan­
dard Criterion of the disease entity. 

Moving to the use of statistical methods for testing substantive causal 
theories, e.g., genetics of schizophrenia, we no longer have a Gold Standard 
Criterion available to us . If we have understood the comparative feebleness 
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of refutation of the null hypothesis in appraising scientific theories (Morrison 
& Henkel, 1970; Meehl, 1978, 1990a), we are looking for stronger tests 
against which competing theories may be judged. Lacking a Gold Standard 
Criterion for the validity of an indicator of some theoretical construct, how 
is it possible to arrive at a "risky prediction" (or "difficult hurdle" or "dan­
gerous potential falsifier," to use Karl Popper's terminology)? Insistence upon 
consistency tests in taxometrics does not hinge upon acceptance of Popper 's 
metatheoretical views. A non-Popperian, e.g. , an inductivist, might rather ex­
press this riskiness feature as does Wesley Salmon, in terms of deriving cer­
tain relationships among the facts from a theory such that , if the theory had 
negligible verisimilitude, this successful derivation would constitute a "damn­
ed strange coincidence" (Salmon, 1984, pp. 213-227; and see discussion in 
Meehl, 1990a, pp. 116-121; 1990b, pp . 39-42). 

The reasoning here is simple and ineluctable. A sufficiently strong the­
ory may permit a numerical prediction directly, as sometimes happens in phys­
ics, chemistry, or astronomy; it happens less commonly in the life sciences 
but can occur in fields like genetics, e.g., on Meehl's dominant gene theory 
of schizotaxia, the incidence of schizotaxia in the first-degree relatives of 
schizophrenes should be one-half . In most of the life sciences, and in almost 
all of the behavioral life sciences, theories are not sufficiently strong to make 
numerical predictions but can, at most, by specifying the conjectured causal 
or compositional structure, derive theorems within that structure that relate 
some parameters to others . 

12 
This possibility gives rise to several kinds of 

consistency tests. 
Suppose the latent structure is conjectured to be taxonic, and in fact it 

is. Then when a given taxometric procedure, e.g., MAMBAC , is applied to 
different sets of indicators, estimates of a latent parameter, say, the taxon 
base rate P, should agree within tolerance . u Second, a given set of indicators 
analyzed by different nonredundant procedures, e.g., MAMBAC and MAX­
COV, should lead to the same value of P. Third, a more severe and hence 
more strongly corroborative test, applying two or more different taxometric 

" To these strong theoretical considerations from mathematics and epistemology may be added 
an observation from the history of science, that convergence of different lines of evidence upon 
a theoretical entity has constituted one of the most powerful modes of theory appraisal. The 
classic example, emphasized by philosopher Wesley Salmon (1984, pp. 213-227; Nye, 1972; and 
see discussion in Meehl, 1990a, pp. 116-121; 1990b, pp. 39-42), is the clinching of the reality 
of molecules by the agreement of 13 independent ways of estimating Avogadro's Number (num­
ber of molecules in a mole), which all came out with an order of magnitude 1023. Those unfa­
miliar with history of the developed sciences may ask , if consistency tests are so important, why 
do not chemists, astronomers , even physiologists, talk about them? The answer is that the con­
cept is taken so much for granted in the advanced sciences, no special terminology is needed for 
it! 
\) That MAMBAC es timates of the " base rate" may "agree," i.e., they tend to be .50, when the 
latent structure is nontaxonic does not weaken this argument; if the initial MAMBAC curves are 
nontaxonic, one has no reason. to attempt to estimate base rates , and the weakness of this con­
sistency test arises only when p, .50 . 
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procedures, e.g., MAMBAC, MAXCOV, to partially or wholly disjoint sets 
of indicators should lead to the same value of P within tolerance. These three 
approaches all examine the agreement via different epistemic paths to the 
numerical estimate of an inferred latent quantity such as base rate , separa­
tion of means, regression slope, nuisance correlation, standard deviation of 
the latent distributions, or whatever. A fourth kind of consistency test is 
more complicated and consists of deriving a theorem (from the postulated la­
tent taxonic structure) in which two or more different numerical values, e.g., 
a manifest correlation or mean difference, and some inferred latent value , 
e.g., a slope, base rate, or hit rate, are related (see, e.g., Golden & Meehl, 
1973; Meehl, 1973a, p. 215, 1979; Meehl & Golden, 1982) . 

It should be clear from this discussion that coherent cut kinetics relies 
on no single index for a conclusion of taxonicity or dimensionality. Rather, 
multiple procedures are used as consistency tests for one another, and, if the 
data set is large enough, some procedures (MAMBAC being one of them) 
may be fruitfully used on subsets selected by the initial application. For in­
stance, if a large data set looked taxonic with a small base rate after applying 
MAMBAC, the researcher might construct a new, smaller sample composed 
of the taxon members (identified by using MAMBAC on the entire data set) 
plus an equal number drawn randomly from cases initially assigned to the 
complement group. Applying MAMBAC to this new subset, the researcher 
would expect to get MAMBAC curves that look taxonic, base-rate estimates 
close to .50, separations and estimates of complement and taxon means close 
to those found with the complete data set, and the same assignment of indi­
viduals to the complement and taxon membership. A researcher might be left 
in doubt by a single procedure but should never be misled by the coherent 
cut kinetics method. 

As we said at the beginning, MAMBAC has been presented here by it­
self; its use with consistency tests (and as such a test for other procedures) is 
planned for a subsequent publication. But we may briefly illustrate the im­
portance and usefulness of this underlying coherence of the formalism by 
considering the 19 pairs of MAMBAC curves (out of a total of 900 pairs) 
that were incorrectly sorted by visual inspection (see Appendix D , pp. 1152-
1156) . In a research situation, data analysis would not stop with simple visu­
al inspection of the curves. Some pertinent additional sources of information 
are : MAMBAC curves generated by other variables from the same samples, 
base-rate estimates, kurtosis of the distributions of the variables individually, 
and, because we have available more than two variables in these Monte 
Carlo samples, the MAXCOV procedure . 

Because these Monte Carlo samples have four variables, there are six 
pairs of MAMBAC curves for each sample. In some instances two pairs of 
curves from a given sample were missorted, but pairs of curves involving 
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other variables were sorted correctly and in a direction consistent with base­
rate estimates, kurtosis for individual variables, and MAXCOV graphs . 

We can consider the base-rate estimates from the variables that gener­
ated the curves in conjunction with the missorted MAMBAC curves. If base­
rate estimates are near .50, the MAMBAC curves should be high (humped) 
in the middle. The primary mistake of the sorters (who did not know the 
base-rate estimates when they looked at the curves) was to confuse nontax­
onic curves (which sometimes are higher on the right end due to sampling 
fluctuations) with taxonic curves from samples with low base rates (which 
may rise to a cusp on the right end) . A base-rate estimate near .50 and 
MAMBAC curves with a dish shape are conjointly evidence for non­
taxonicity . A sorter considering the MAMBAC curves and the base rates 
together should not have been misled. 

When we use another of the cut kinetics procedures as a consistency 
test, MAXCOV curves using the variables in the missorted MAMBAC 
curves are clearly either taxonic or nontaxonic for all 19 of the missorted 
cases. Although a given pair of these MAMBAC curves by themselves might 
have left a researcher in doubt about the latent structure, we can now be 
confident in every one of the cases . 

This is as good a place as any to clarify an important point about the 
over-all approach in the formalism. Mathematical expressions have been 
treated throughout as if they were true values rather than estimates, except 
for a few places where the usual statistician's "hat" (circumflex) has been 
used. Nowhere have we asked whether a certain statistical estimator as ob­
tained in a taxometric sample is a maximum likelihood estimator, or similar 
questions customary in inferential statistics, e.g., sufficient? efficient? mini­
mum variance bound estimator? (cf. Barnett, 1973) . There are several rea­
sons for this, which we will simply state briefly without arguing for them. 
The reader may choose to disagree with us but at least will understand our 
frame of reference. First, the inferred values in taxometrics are quite compli­
cated functions of the observations, and, not being mathematical statisticians 
or experts in distribution theory, we are simply incapable of answering some 
of those conventional Fisherian questions, e.g., "is this estimator an MLE?" 
Second, the whole idea of getting a best single estimator of a statistical pa­
rameter becomes fuzzed up when we are talking about latent quantities as 
numerical attributes of hypothetical constructs, a problem Fisher did not face 
in agronomy; there all of the measures are operationally defined observables 
(such as pounds of fertilizer or yield in bushels of wheat), so that the source 
of error is random sampling fluctuation . Third, Fisher explicitly stated (194 7, 
pp. 435-436, 1951, p. 54; cf. discussion in Johnstone, 1987) that his meth­
ods presuppose the physical process of randomization, which means that one 
either employs a randomizing procedure in determining which individuals in 
a sample are subjected to such-and-such a treatment or, in nonexperimental 
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contexts, specifies an actual physical population from which a sample is then 
randomly drawn. Neither of these conditions is met in the overwhelming ma­
jority of research domains where taxometric analysis is appropriate . If the 
theoretical structure is idealized sufficiently to make the formalism of con­
ventional inferential statistics tractable, one knows for certain that this ideal­
ization is literally false and consequently faces the problem of robustness in 
the model. The robustness can hardly be determined analytically, since the 
reason for the idealization was that the "real" physical situation is mathe­
matically intractable, either literally (as in the three-body problem in physics) 
or because we just are not smart enough to do it . But if the mathematics de­
scribing the real situation is intractable (which is why we idealized in the 
first place, to get going with the formalism), then obviously the discrepancy 
between the two, which is what robustness is about, will be intractable a for­
tiori. If we cannot work the mathematics for the real world, then we surely 
cannot work the mathematics for the robustness, which would compare the 
intractable formalism of the real world with the tractable formalism for the 
idealization! That is why so many taxometric methods in numerical taxono­
my, such as the cluster algorithms, are far more often investigated by Monte 
Carlo methods than with rigorous analytical derivations. More mathematical­
ly competent readers may wish to look into the conventional statistician's 
questions about some of the procedures in the coherent cut kinetics method, 
and we certainly do not discourage such efforts. Meanwhile, we rely on 
Monte Carlo runs to answer the important questions concerning bias, ran­
dom fluctuation, and tolerances . 
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