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THE PROBLEM OF 
MAXCOV-HITMAX IDEALIZATION 
 
The MAXCOV-HITMAX taxometric procedure (Meehl, 1973; Meehl & Golden, 
1982; Meehl & Yonce, 1996; various applications cited in Korfine & Lenzenweger, 
1995;  Lenzenweger & Korfine, 1992, 1995; Meehl, 1992, p. 135; Nicholson & 
Neufeld, 1994; Waller, Putnam, & Carlson, 1996; and nonpsychopathology 
applications by Gangestad & Snyder, 1985; Strube, 1989) utilizes the manifest 
statistics among three fallible quantitative indicators to (a) infer latent taxonicity, 
(b) estimate latent parameters (e.g., taxon base rate, specificity and sensitivity  
at a cut), and (c) make Bayes-Theorem classifications of individuals, with 
corresponding diagnostic confidence statements. The procedure relies on a theorem 
that, absent nuisance correlation within the latent classes, the covariance Cyz(xi)  
of indicators y,z (output pair) computed on cases having a given score xi on 
indicator x (input indicator) is a maximum when the xi-interval is composed equally 
of taxon and complement (nontaxon) cases. This interval contains the x-value 
corresponding to the intersection of the two overlapping frequency functions where 
ordinates ft(x) and fc(x) are equal; thus, it is the x-cut that minimizes misclass-
ifications (= hitmax cut xi locating the hitmax interval ∆xi), hence the acronym 
MAXCOV-HITMAX. That is, we locate the hitmax cut on x by studying the 
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behavior of the (yz)-covariance. While Monte Carlo runs and several real data 
studies show the procedure to be fairly robust under small or moderate departures 
from the strong auxiliary conjecture of zero nuisance covariance, this idealization is 
irksome and in some research situations cannot be well enough approximated to 
rely on robustness. The present chapter derives a more general algorithm free of this 
idealizing conjecture, called generalized MAXCOV (no longer HITMAX, because 
the covariance-maximizing interval located is not necessarily that containing the 
hitmax cut). 
 
 
GENERALIZED MAXCOV 
 
The basic equation for deriving the MAXCOV algorithm (HITMAX or generalized) 
is a purely algebraic distribution-free decomposition identity, in fact a set-
theoretical truism that holds even if the conjectured latent taxon has no real 
existence. (In that situation the search algorithm will reveal no clear maximum, and 
if a noise-determined pseudo-maximum—a chancy or artifactual “highest local jog” 
in the covariance graph—were foolishly treated seriously, the several consistency 
tests we rely on will be violated, protecting against erroneous taxonic inference. For 
a general theoretical and methodological discussion of the taxonicity conjecture and 
its testing, see Meehl, 1992.) This basic equation is, ignoring sampling error, 
 

Cyz(xi) = pCyzt + qCyzc + p q ( ty – cy ) ( tz – cz ) (1) 
  where 

Cyz(xi) = manifest (yz)-covariance of cases having a score xi,  
hence, an empirical function of x; 

Cyzt = (yz)-covariance within the taxon, a constant; 

Cyzc = (yz)-covariance within the complement, a constant; 

ty , cy , tz , cz  = means of the taxon and complement classes on  
indicators y and z, respectively; 

p, q = proportions of the subset belonging to the taxon and  
complement classes, respectively. 

 
In the original MAXCOV-HITMAX procedure on the idealizing conjecture of no 
nuisance covariance (Cyzt = Cyzc = 0), the first two terms on the right vanish, so the 
left-hand manifest covariance equals the third term on the right. I call this the valid-
ity mixture term because its size depends on the two crude validities (mean taxon/ 
complement differences, taken as constant absent sampling error or nontaxonic
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moderator effects) and the taxonic mixture p:q. If either the y or z indicator had zero 
taxonic validity, or if there were no taxon/complement mix (i.e., if p = 0 or q = 0), 
this validity mixture term would also vanish in any such population or sample.  
Since the validity mixture term is maximized when p = q, plotting the graph of the 
observable Cyz(xi) over xi-intervals locates the hitmax interval by finding this 
graph’s maximum. In that interval pq = ¼, and knowing this allows us to solve for 
the mean difference product. Using that value we can write quadratics in pi for all 
other intervals, solve for pi, and proceed as explained in Meehl (1973) to estimate 
all of the latent values. 

If sizable nuisance covariance exists, the first two terms on the right do not 
vanish and the hitmax interval cannot be located by finding the empirical maximum 
of Cyz(x) unless we know that the nuisance covariances are equal, whereby the sum 
piCyzt + qiCyzc is invariant over x-intervals. Even then, however, we cannot solve for 
the validity product because we cannot parse the right side into its nuisance 
covariance component and its validity mixture component.  We can, however, 
proceed as follows: Choosing a cut at sufficiently high values of x, we will have 
passed all or nearly all of the complement cases, so that cases lying above that cut 
will be nearly “pure taxon.” Hence, in this region the validity mixture term 
vanishes, as does the complement nuisance component, and only the component 
piCyzt (where pi ¶ 1) remains, giving us an estimate of the taxon nuisance 
covariance.  Similarly, we estimate the complement nuisance covariance from cases 
lying in the extreme low region of the x-distribution. Returning to Equation 1, 
designating the validity product as an unknown parameter θ 

θ  =   ( ty – cy ) ( tz – cz ), a constant = K. (2) 

Simplifying subscripts as  Cyzt = Ct, Cyzc = Cc 

and expanding Equation 1 in terms of pi (= 1 – qi), we have (dropping the sub- 
script i), 

Cyz(x) = p(Ct – Cc) + (p – p2)θ  + Cc (3) 

differentiating with respect to x and setting = 0 for a maximum, 

( )t c
C( ) C C 2 0d x dp dp dpp
dx dx dx dx

θ θ= − + − =  [equation corrected by author] (4) 

dividing by dp
dx

 [≠ 0 in region of interest] 

(Ct – Cc) + θ – 2pθ = 0   at max (5) 

so 
( )t cC C

2
p

θ
θ

+ −
=    at max. (6) 
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At this maximum, Cyz(x) has an observed numerical value, Cmax.  So at that value, 

p(Ct – Cc) + pθ – p2θ = Cmax – Cc . (7) 

Plugging Equation 6 into Equation 7, we obtain 

( ) ( ) ( )t c t c
t c

C C C C
C C

2 2
θ θ

θ
θ θ

+ − + −  
− +  

  





 

( ) ( )
2

t c
c max

C C
C C 0

2
θ

θ
θ

 + − 
 − + −    

,=  (8) 

which, with some straightforward tedious algebra, yields 

θ2 + (2Ct + 2Cc – 4 Cmax) θ + (Ct – Cc)2  = 0 (9) 

a quadratic in θ.  Its roots are 

θ = (2Cmax – Ct – Cc) ± 2[(Ct – Cmax) (Cc – Cmax)]1/2
 . (10) 

This has the form 

(a + b) ± 2(ab)1/2 (11) 

since 

a + b + 2(ab)1/2 = (a1/2 + b1/2)2 (12) 

and 

a + b – 2(ab)1/2 = (a1/2 – b1/2)2 (13) 

the roots (Equation 11) are 

θ1 = [(Cmax – Ct)1/2 + (Cmax – Cc)1/2]2
  (14) 

θ2 = [(Cmax – Ct)1/2 – (Cmax – Cc)1/2]2
  

)

(15) 

Root θ1 is selected by the physical situation that for the special case of zero 
nuisance covariance Ct = Cc = 0 it yields the correct value = 4CK̂ max in the hitmax 
interval, whereas θ2 gives an impermissible = 0. K̂

Having found θ, we proceed as in MAXCOV-HITMAX, using Equation 3 in 
each x-interval to get the interval’s taxon rate pi, the generalized quadratic 
algorithm for the taxon-proportion in an interval xi being 

( ) ( ) (2
t c t c cK C C K C C 4K C( ) C

( )
2K

i
i

x
p x

+ − ± + − − −
=  , (16) 

then Ni pi = Nti the interval’s taxon frequency, then ΣNti = Nt, and, finally, base rate 
P = Nt/N. The latent frequencies having been computed for each x-interval, we can 
obtain directly latent means, standard deviations, skewness, and kurtosis if desired. 
For any triad (x, y, z) of indicator variables, three MAXCOV procedures exist 
(using either x, y, or z as input indicator) and the three inferred latent distributions 
are thus obtained, as in MAXCOV-HITMAX. 
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ROBUSTNESS OF 
THE ORIGINAL PROCEDURE 
 
It is illuminating to ask why the original procedure is fairly robust under departures 
from the idealization of zero nuisance covariances within the categories (cf., even in 
my first technical report [Meehl, 1965, pp. 50-54], a reassuring numerical example 
for rt = .40, rc = .20; Meehl & Golden [1982, Table 5,2]; Meehl & Yonce [1996]). 
The General Covariance Mixture Formula for the observed (yz)-covariance in an x-
interval includes the nuisance covariances 

Cyz(xi) = pi Ct + qi Cc + pi qi K 

where K (treated as constant over intervals) is the product of the y and z separations, 
K = ( ty – cy )( tz – cz ), and pi, qi are the taxon and complement proportions, 
respectively. Suppose the two nuisance covariances were equal, Ct = Cc = C, an 
auxiliary conjecture unlikely to be literally true in psychopathology but often an 
adequate approximation. Then the first two terms sum to C(pi + qi) = C, the 
neglected component being constant as we move through the intervals. The 
(erroneous, idealized) equation 

Cyz(xi) = K pi qi (17) 

employed instead of the correct relation 

Cyz(xi) = C + K pi qi (18) 

still locates the hitmax cut correctly by maximizing the variable term. However, 
solving for K via the hitmax interval relation pi = qi = ½  

Cyz(xh) = ¼ K (19) 

K = 4Cyz(xh) (20) 

yields an inflated estimate > K [= true value of sepK̂ y · sepz]. Relying on this 
erroneous  when we solve for the pK̂ is in the other x-intervals, the quadratic 
algorithm (treating C = 0 again) is 

1/ 2C1 1( ) ˆ2 4 K
yz

ip x
 

= ± − 
 

 (21) 

where the observed interval covariance is, in latent terms, 

Cyz(xi) = C + pi qi K         (true K). (22) 

Then our approximation for each pi is 
1/ 2ˆC K1 1

ˆ2 4 C K
i i

i
p qp

 +
= ± −

+ 
  (23) 
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Re-writing the erroneous values in terms of two error-multipliers m(xi) and M on K, 
1/ 2( )K1 1

2 4 K
i i i

i
p q m xp

M
= ± − 


  (24) 

where M is constant over x-intervals but m(xi) varies (since the fixed C added to the 
variable term Kpiqi results in a varying proportional errror),we have then for our 
taxon proportion estimate in each interval xi 

1/ 2( )1 1( )
2 4

i i i
i

p q m xp x
M

 = ± −  
. (25) 

The variable term is correct only at xh, since in all other intervals m(xi) > M. We 
benefit from countervailing inflations in numerator and denominator, which 
partially explains the robustness but m(xi) changes over intervals. In intervals other 
than the hitmax, the variable subtracted term is inflated; hence, the radicand is 
deflated. To the left of xh, where one adds the radical to ½, one overestimates pi. To 
the right of xh, where the radical is subtracted from ½, pi is underestimated. Hence 
the values of = nt

ˆ
iN i p(xi) are inflated in the region xi < xh and deflated in the region 

xi > xh. For situations not too asymmetrical about hitmax (as when P ¶ .50), the 
sums of these opposite errors tend to cancel out in estimating  = tN̂ t

ˆ
iNΣ  from sums 

above and below xh, and, hence, = /N is not badly estimated. We note that when 
P < .50 (as usual in psychopathology research), the asymmetrical countervailing 
errors lead to overestimation of the base rate P. 

P̂ tN̂

The somewhat surprising robustness of the original procedure under departure 
from the zero nuisance covariance idealization is illustrated in Table 1, based on 
error-free data (Gaussian table) for σt = σc = 1, separations ( ty – cy ) = ( tz – cz

P̂

) = 2, 
and five nuisance covariance configurations. As the preceding equations and  
text require, the peak covariance shifts toward the right whenever nuisance 
covariance is greater in the taxon than in the complement group, and more so for 
smaller base rates. That C(yz) MAXCOV interval is, of course, not the hitmax 
interval unless the nuisance covariances are equal in taxon and complement. Even 
when the base rate is quite large (= .50), estimated  is unbiased when CP̂ t = Cc. 
Large nuisance covariances and low base rate generates an upward bias in  that is 
unacceptably large (∆  = .07), suggesting a need for the generalized procedure 
derived herein. The unavoidable tradeoff between bias (using the idealized pro-
cedure) and random sampling error (using the generalized procedure but often 
relying on somewhat unstable estimates of C

P̂

t and Cc) remains to be examined over 
the parametric configuration space. It is conceivable that a simple standard correc-
tion (downward) for situations where the MAXCOV graph strongly suggests a low 
P would do as well as the generalized, more elegant approach developed above.
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Table 1 Error-Free MAXCOV Values With Various Combinations 
 of Nuisance Covariance 

Configuration  Max(cov)  Maximum Interval  Estimated P 

Covc Covt  P = .50  .25  .10 P = .50 .25 .10 P = .50 .25 .10 

.00 .00    1.00 1.00 1.00    1.0 1.5 2.1    .49 .25 .10 

.00 .25    1.13 1.13 1.13    1.1 1.6 2.2    .46 .23 .09 

.25 .25    1.25 1.25 1.25    1.0 1.5 2.1    .49 .27 .14 

.25 .50    1.38 1.38 1.38    1.1 1.6 2.2    .46 .26 .13 

.50 .50    1.50 1.50 1.50    1.0 1.5 2.1    .49 .29 .17 

 
 
Unfortunately, that question involves unsettled epistemological—not purely 
mathematical—issues in statistical inference theory (e.g., Bayesian rectangularity of 
priors). 
 
 
ESTIMATING THE NUISANCE COVARIANCES 
 
The use of Equation 3 as described above requires that we have trustworthy esti-
mates of the two nuisance covariances, as obtained from cases in the extreme (high 
and low) x-regions. Demarcating the “safe” x-regions is problematic, since we do 
not know how high a cut point must be to guarantee a negligible contamination of 
the taxon covariance estimate by the complement, and the same is true in the 
extreme low x-region.  If we go out so far as to be very safe from taxon/complement 
mixture, the number of available cases in the demarcated region is dangerously 
small, except with very large initial samples.  We have a tradeoff between random 
sampling error (demarcating a very extreme tail, and, hence, small N) and bias 
(systematic error due to appreciable complement class contribution to the manifest 
covariance). A rigorous analytic optimizing is presumably impossible absent 
knowledge of the taxonic separation, and I have not tried to derive one since latent 
Gaussian distributions cannot be safely assumed in psychopathology and, in 
general, will be false. 

With large samples, the obvious demarcation criterion would be the high  
(and low) x-regions where the observed (yz)-covariance has clearly become  
flat with changes in x. Because sampling error becomes important with a  
smaller number of cases, the covariances within successive x-intervals begin  
to fluctuate (apart from the systematic effect of decreasing taxon mixture)  
as we move out into relatively “pure” extreme regions far from the x-mean.  
Our problem is to decide when, in aiming to reduce random error by raising the N,  
we have located the upper cut so far down that undesired contribution  
by the complement class has become appreciable. I cannot currently offer 



88  New Methodological Concepts 

a satisfactory answer to this. A crude nonparametric criterion would be the 
successive slopes of the interval covariance graph as we move downward.  If the 
complement contribution is negligible in an x-region, increments and decrements of 
the (yz)-covariance will be random; hence, the slope signs (+) or (–) from interval to 
adjacent interval will be random. The probability of, say, 3 successive slopes being 
(– – –) is therefore p = .125, and, given a high prior that complement cases are 
being overtaken as we move down, this significance level might be a reasonable 
one at which to stop moving. Surely we should stop at (– – – –), where p < .07.  Or, 
looking at it the other way around, attempting a “positive” argument for minimal 
contamination (via a “positive” argument for flatness), one might set up a crude 
criterion of  “near-zero” slope of adjacent line segments, say ∆Cx = C(xi) – C(xi+1) ≤ 
k, then applying a sign test of “near-flatness” to the terminal segments. Another 
approach would be to define the x-intervals by blocks of equal frequency (deciles, 
or if N permits, vigintiles) and examine the Pearson rs in sets of adjacent blocks for 
homogeneity, testing their zr-variance against the theoretical variance σ2 = (N – 3)–1. 
A third possibility asks, employing a suitable extrapolation algorithm, to what 
asymptote are the successive interval covariances converging as we move out? 
Perhaps a combination of procedures would be safest. Given thin data when far out, 
one must also hold down the effect of outliers (see, e.g., Cleveland, 1979, for an 
approach to this problem). It is reassuring that for sample size N = 300, P = Q = ½, 
and a 2-SD taxon separation, the two top deciles will be about 98% uncontaminated 
by the complement class, providing 60 cases for estimating the nuisance covariance. 

When P << ½ (as in most psychopathology research) it is possible to demarcate 
a fairly large lower region of the x-distribution that will consist of nontaxon cases, 
with a subsample size permitting a trustworthy estimate of Cc. However, when the 
output covariance maximum (the taxonic “hump”) is markedly displaced from 
center (due to small P), there may not be any flat x-region at the high side, and the 
graph may continue to fall or rise as we move farther out on x. In that situation it 
may be appropriate to employ an extrapolation procedure, inferring the asymptote 
of Cyz(xi) = (piCt + qiCc + piqiKyz) as pi → 1, qi → 0, and piqi → 0. This asymptote 
estimates the desired nuisance covariance Ct for the taxon. 

When the base rate is quite small (e.g., P ≤ .10) the MAXCOV graph may not 
have a local maximum, since, unless the sample size is very great, there is not 
sufficient room far enough out to get past the hitmax interval (where pi ¶ qi) so that 
the validity mixture term Kpiqi can begin to decline again. Error-free MAXCOV 
curves are shown in Figure 1. Nuisance covariance in the complement group is 
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Figure 1 Error-free MAXCOV curves with different amounts  
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indicated at the left of the curves; taxon nuisance covariance is on the right. The 
MAXCOV peak shifts to the right with decreasing base rate (panels for P = .50, .25, 
.10) and also whenever there is greater nuisance covariance in the taxon group than 
in the complement (the latter situation is indicated by the dotted curves in each 
panel). Monte Carlo runs on artificial data (incorporating random error) for P = .10 
and a 2-SD separation may display either a (Tukey-smoothed) hump or a cusp 
(Meehl & Yonce, 1996). One cannot even be sure that pi ¶ ½ in the “top” interval, 
since pi  may still be rising in the region; so piqi < ¼, rather than = ¼ (as it is in a 
true hitmax interval where the taxon/complement mix is even). 

My suggestion for this unfavorable case is an iterative bootstraps procedure, but 
I lack empirical evidence that it will work satisfactorily. The iterative sequence 
proceeds as follows. Writing the general covariance mixture equation for the 
observed xi-interval covariance Cyz(xi) in latent terms, 

Cyz(xi) = piCt + qiCc + piqiKyz , (26)  

we take as first approximation that the nuisance covariances Ct, Cc are equal [= Cyz] 
and that the taxon proportion pi in the Cmax interval, weather a hump or a cusp, is 
pi = ½. Then 

Cyz(max) = Cyz + ¼ K. (27) 

To use this relation we need to estimate the common covariance Cyz, which we 
get by calculating directly the observed covariance of the bottom half or third of the 
x-distribution, safely assumed almost wholly uncontaminated by taxon cases when 
the base rate is small and the maximum covariance is a hump or cusp located far to 
the right.  Thus, if N = 300, there are 150 cases below the x-median, yielding a 
trustworthy “direct” estimate of Cc (= Cyz). 

Putting this C  in Equation 27 we solve for K, ˆ

K̂ yz  = 4(Cmax – ). (28) Ĉ yz

Given these estimates  and K , writing the equation for each x-interval in the 
unknown p

Ĉ yz
ˆ

i,  

Cyz(xi) = C + pˆ
yz i qi K̂ , (29) 

we solve for pi, qi per interval. In each interval, we compute the taxon frequency Nti, 
given the interval’s total frequency N (observed), 

t
ˆ ˆi iN p N= i

t
ˆ

i

 (30) 

and  (31) c
ˆ

i iN N N= −
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From these latent interval frequencies we compute estimates of the latent means 

tx  and cx  and of the base rate t
1ˆ

n

xP
N

= ˆ
iNΣ  over all n-intervals. 

Conducting this sequence with y as input and Cxz(yi) as output, we get another 
estimate , and of latent y-means ŷP t ,y cy ; similarly, we use z as input to get 

another estimate  and of the latent z-means ẑP t ,z cz . 

From the latent y- and z-means we now reconstitute the  (instead of 
inferring it from the observed (yz)-covariance with x as input) and, taking as a 
revised base rate estimate the average = ½ 

K̂ yz

ŷzP ( )ˆ ˆ
y zP P+ , write a new grand 

covariance mixture equation for the whole group of cases, 

Cyz(x) = CŷzP t +  +  (32) ˆ
yzQ cĈ ŷzP ˆ

yzQ K̂ yz

now treating the taxon covariance as an unknown (hence no carat on it in Equation 
32)  and solving for it (instead of assuming it = Cc). 

Setting up equations analogous to Equation 32 with y and z as inputs, we obtain 
new approximations for Ctxz and Ctxy in the same manner. These values can then be 
employed in the generalized procedure described at the beginning of this chapter. If 
there is a MAXCOV “hump,” that is clearly appropriate. If the graph is a cusp, we 
do not have an observed mathematical maximum, but relying on the error-free 
results, it may be safe to proceed as if the top interval is “like a maximum” for use 
of the generalized MAXCOV equation. 

There is no vicious “circularity” here, because we obtain the t ,y c ,y t ,z cz  com-
ponents for reconstituting Kyz when we employ y and x as input indicators, but the 

 and  are inferred, employing the general equation with x as input 
variable. Since the formalism does not force convergence of these different 
epistemic paths to latent parameters, iterative agreement indicates the final 
estimates to be accurate and further corroborates the structural conjecture upon 
which the equations are predicated. 

P̂ tĈ ( )yz

Estimating the two nuisance covariances is obviously a complicated,  
difficult matter which colleagues and I are currently exploring analytically  
and with Monte Carlo runs on artificial data. In this chapter I have only  
sketched out what appear to be the main options. The availability and appropriate-
ness of each undoubtedly depends on the parametric configuration, especially 
sample size, base rate, and taxonic separation—only the first being accurately 
known to the investigator. Assuming the threshold question of taxonicity has  
been answered, one asks whether the MAXCOV graphs (three or more in  
number, e.g., 12 graphs given four indicators) display a flat region at the  
high end of the input variable. This inspectional impression must be corroborated  
by appropriate statistical tests (e.g., sign test on slopes of line segments, 
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variance test on zr-transformed (yz) correlations in the flat-looking x-intervals). If 
these tests indicate no change in the region, one concludes that the cases lying 
therein are almost “pure taxon,” largely uncontaminated by complement class cases, 
so pooling these intervals one can computes Ct directly from the observations. In 
cases of low base rate, the iterative procedure may be an alternative.  Monte Carlo 
investigation of estimating nuisance covariance with these procedures should 
provide more helpful guidelines for researchers. 
 
I am grateful to Niels G. Waller and Leslie J. Yonce for helpful comments on this 
chapter, and to the latter for work on the chapter table and figure. 
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