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Summary.-Given three quantitative indicators of a conjectured latent taxon, a 
staustical funcuon defined as the covariance of nvo indicarors (designated for the pro- 
cedure as the "output" indcators) computed within successive intervals along the 
third (designated as "input") indicator reveals whether the latent structure of the data 
is taxonic or not. If it is taxonic, latent parameters (base rate, hit rates, complement 
and taxon means) can be estimated, the latent distributions drawn, and subjects as- 
signed to the taxon or the complement group. Several consistency tests are described. 
MAXCOV (MAXimum Covariance) is one of a related family of taxometric proce- 
dures in Meehl's Coherent Cut Ktnetics Method. 
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This is the second in a series of articles about coherent cut kinetics, a 
system of procedures to determine whether the latent structure of a data set 
is taxonic and, if it is, to estimate the latent parameters associated with the 
taxon and complement (nontaxon) groups and to assign individual elements 
to membership in one or the other group.' The phrase 'coherent cut kmet- 
ics' refers to the epistemology and mathematics of the approach: we move 
cuts on a designated input variable and study the statistical behavior of oth- 
er (output) variables on cases in the region of the cut and in regions demar- 
cated by the cut. Inferring latent parameters (base rates, means, valid and 
false positive rates), we test the model and the numerical values for consis- 
tency over (a) different variables and (b) different procedures. We say 'kinet- 
ics' because the cuts move, 'coherent' because the inferences should be con- 
sistent. 

MAXCOV ( m u m  Covariance) is one of the procedures used in 
the coherent cut kinetics method. It was first derived and conceived as a con- 
sistency test (Meehl, 1965), later as a taxon detector and parameter estimator 
(Meehl, 1968). The basic procedure has been described previously by Meehl 
(1973; Meehl & Golden, 1982), and MAXCOV or variants of it have been 
used by researchers to detect taxa in various areas (Golden & Meehl, 1973a; 
Lowrie & Raulin, 1990; and see discussion of dichotomous output indicators 
below). This article is an expansion on previous presentations, add~ng exem- 
plary computer code and demonstrating the procedure with different Monte 
Carlo configurations. 

Although MAXCOV wdl be presented here more or less as a stand- 
alone procedure, it is ideally used as one of the battery of taxometric proce- 

'For discussion of the meaning, existence, and detection of taxa (real, nonarbitrary categories, 
types, entities) in personology and psychopathology, see Meehl (1992, 1995a), Meehl and Gold- 
en (1982), and methodological references cited in those papers. The first article in this series is 
about the MAMBAC procedure (Meehl & Yonce, 1994). 
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dures and consistency tests in Meehl's coherent cut kinetics method, each of 
which w d  contribute additional indications of taxonicity (or lack of it) and 
generate parameter estimates. The other procedures should confirm MAX- 
COV results or give improved estimates in some cases for which MAXCOV 
may not be the optimal procedure; likewise, MAXCOV WLLI serve this func- 
tion for other procedures in the method. 

SELECTION OF INDICATORS 
MAXCOV requires three indicators, at least one of which is continu- 

ously distributed (in the usual social science sense of quantitative as con- 
trasted with qualitative or drchotomous); if all the indicators are continuous, 
each may be used in turn as the "input" indrcator, and the analysis is then 
done three times on the data set, yielding three MAXCOV output curves. It 
is desirable to have several continuous indrcators so multiple curves can be 
generated and so all of the other procedures can be run to provide consis- 
tency checks and confirmation of results obtained from MAXCOV. 

Selection or construction of indicators should preferably be theoretically 
motivated and guided by previous empirical research, taxometric or not. 
Conventional methods of inferring construct val~dity for a conjectured tax- 
on, e.g., significant mean ddferences between dagnosed groups, are proper- 
ly viewed as discovery aids, not as assump~ions as that term is commonly 
used (Meehl, 1992; Meehl & Golden, 1982). Atheoretical taxometrics per- 
formed on a miscellany of "available" measures is not the optimal approach, 
but it is do-able and w d  be treated in the next article of this series. Al- 
though all correlates of taxonic indicators contribute to their construct-valid 
interpretation, the whole point of bootstrap taxometrics is that the statistical 
procedure largely "speaks for itself," given the mathematics and the numeri- 
cal coherence (Meehl, 1995a). In this respect, it is similar to more famihar 
methods such as factor analysis and multidimensional scahg.  

Each indicator should be selected to give good separation between the 
complement and taxon groups, i.e., to have good validty, and also to be un- 
correlated with the other indicators within either the taxon or complement 
(nontaxon) group, i.e., to have no or little nuisance covariance. For most of 
the results reported here, we have used variables with 2 SD (latent expected) 
separation between the means of the complement and taxon groups and with 
negligible nuisance covariance. We have explored smaller separations and 
the addition of nuisance covariance to a limited extent, although much s d  
needs to be done to assess the effects of these influences. A more detailed 
discussion of the selection of indicators and rationale behind our choices in 
these Monte Carlo tests may be found in Meehl and Yonce (1994). Al- 
though MAXCOV seems to be fairly robust, this should not be taken as a 
license for casualness in the initial selection of indrcators. 

Some psychologists may opine that separations of 1.50 SD or even 1.25 
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SD are unduly optimistic (or "perfectionistic"). We disagree. There are nu- 
merous and diverse domains of personality research in which means of taxa 
differ from those of complementary "controls" by 1.50 to 3.00 SD when 
carefully built measures, reliable criteria, and adequate sample sizes are em- 
ployed. For example, such separations may be found in MMPI scores for 
nosological categories in psychopathology; malmgering on the MMPI; psy- 
chometric deficits in diffuse brain damage; maltngering in neuropsychologi- 
cal tests; IQs of business executives, brigadier generals, and college profes- 
sors; self-confidence scores of general officers; "scientific" Strong Vocational 
Interest Blank scores of APA presidents; sociahation scores of honored citi- 
zens versus shoplifters; interest scores of professional men and of skilled blue- 
collar workers; trade test scores; achievement test scores for ddferent college 
majors; measures of religious belief and of political ideology in extreme 
groups; "femininity" scores of male homosexuals and of male Broadway ac- 
tors; and morale scores of dissatisfied employees. In laboratory medicine, 
some biochemical tests are out 3, 4, or even 5 SD for diagnosed cases. The 
closer a fallible indicator is in the causal chain to the etiological agent (DNA, 
germ, tissue pathology, mental state or entity), the larger the separation will 
tend to be since each additional h k  in the chain of causal influences, being 
stochastic rather than nomological, attenuates the correlation between the ini- 
tial members and the phenotypic terminus As was argued by Meehl and 
Yonce (1994) and by Meehl (1995a1, it seems reasonable to urge taxon re- 
searchers to employ indicators that are at least as good as the weakest MMPI 
scales (Hy and Pa) are against pre-DSM diagnostic criteria. This amounts to 
a T score of 65. To achieve a hit rate of 75% on Gaussian distributions with 
equal groups and variances the taxon mean standard score is at 1.33, an 
MMPI T score of only 63, an unduly pessimistic separation. 

Our advocacy of good separations (hardly a novel idea in psychomet- 
rics) and our optimism as to attaining them should not be construed as a 
negative thesis, that separations less than 1.50 or 1.25 SD cannot "work" 
taxometrically. No one knows the lower h i t  here. Meehl and Golden 
(1982) found that a 1.00 SD separation seemed safe for the consistency tests 
to detect unacceptable deviations of estimates from the true values. Lenzen- 
weger and colleagues have obtained good results using the Chapman scales 
(which have about a 1.00 SD separation) to detect the schizotypal taxon 
among college students. It is noteworthy that the taxonic cases so identified 
show a T score of 78 on the MMPI Sc scale (Lenzenweger, 1993). 

Ideally, one would prefer a direct observational check on nuisance co- 
variance, but that would require a gold standard criterion of taxon member- 
ship, and, if we had such a criterion, we would (usually) not be doing boot- 
strap taxometrics. However, nuisance covariance does not present as insur- 
mountable a problem as some might fear. First, in personology, psychopa- 
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thology, and other areas of "soft" psychology, correlations tend to be low- 
psychologists usually work hard to get them up to r = .50 or better. The typ- 
ical phi coefficient between two items on the same MMPI scale is only $= 
.12 (Dahlstrom, personal communication, 1995). Thus, wichout data, the 
prior probabhty is that nuisance covariance wdl be small. Second, one can 
select indicators at Meren t  behavioral levels and domains, e.g., an MMPI 
score plus SPEM anomaly plus ahadochokinesia in researching schizotaxia, 
which are k e l y  to be both relatively independent and theoretically interest- 
ing. Third, pairs of psychometric indicators can be item analyzed to reduce 
initial correlations. Nonpsychometric indicators not purifiable by item analy- 
sis may sometimes be subjected to n o h e a r  transformations of their metric 
to reduce the nuisance covariance term. 

After using such indicator selection and manipulation techniques, how 
successful one has been in eluninating or reducing nuisance covariance can 
be checked by taxometric analysis of quasi-"pure" groups chosen by exter- 
nal criteria. For example, we might have a neurological indicator and a psy- 
chometric indicator of schizophrenia, each previously shown to be valid by 
conventional nontaxometric research on diagnosed patients. We then find 
the two candidate indicators to be negligibly correlated in a sample of care- 
fully diagnosed (SADS interview, MMPI) schizophrenic probands; we study 
their clinically normal MZ twins and find the two canddate indicators to be 
negligibly correlated in that group also. We obtain similarly low correlations 
for carefully screened  normal^."^ These three "externally defined" catego- 
ries w~Ll be sufficiently uncontaminated so that taxon/complement mixture 
cannot explain a sizable correlation, should we find one, between the candi- 
date indicators. If the correlations are low, we may proceed with confidence 
to study a new group we conjecture contains a latent taxon that may be de- 
tected using the indicators we have chosen. Another fairly direct test of negli- 
gible nuisance covariance would be to form subgroups of taxon or comple- - 

ment members identified by one subset of indicators (say, x and Y) and com- 

One cannot employ nonschizo hrenic psychiatric controls for this purpose because some dini- 
iians (e.g., Bleuler, Rado. ~ e e B )  conjecture thar a sizable proportion of such patients are un- 
recognized schizocyp,, decompensated in varyin degrees and directions. Since our Ion 
research aim is to ~ n d  lnd~cators thar detect suci  cases in the absence of florid schizopftzir 
signs, in the discovery phase (searching for valid indicators), i t  would be inconsistent to reject 
candidate indicators that, i€ valid for underlying schizotypy or schizotaxia, shozdd properly cor- 
relate (due to taxon/complement mixture) among psychiatric patients not meeting, sa DSM 
criteria for schizophrenia (Meehl, 1990~).  There is norhing "viciously circular" about X'is pro- 
cedure. If the theory is correct, our theory-motivated indicator screening will enable us to dis- 
cover its correctness taxornetricdy. If the theory is incorrect, nothing in the indicator selection 
process will produce an artefactual taxometric corroboration. That indicators x, y, z have been 
shown to be n ~ ~ l ~ ~ ~ b l y  correlated in the three opulations but not in a patient miscellany can- 
not somehow "lorce ' them to display clear anxconsistent MAXCOV taxonic patterns when no 
taxon exists. That x, y, z were retained des ire being correlated in a mixed nonschizophrenic 
psychiatric group has no mathematical ren&ncy to make their relationships, even within that 
special population, be of the taxonic sort. 
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pute observable nuisance correlations of the other indicators (say, r,,) within 
those homogenized groups. A small contamination of a complement subset - - 

by a few taxon cases, or vice versa, does not generate a large enough ob- 
served correlation in quasi-"pure" subjects to invalidate this check (see Ap- 
pendix B, p. 1146). 

F indy ,  we can rely on the statistics of the procedure and consistency 
tests. MAXCOV appears to be highly robust with respect to the indepen- 
dence conjecture, and consistency tests w d  tell us whether the model is too 
badly violated. Nuisance correlations up to .25 or .30 can be considered to 
be negligible in effect. When they are higher than that, researchers may elect 
to use the generdzed procedure (Meehl, 1995b) or to rely on robustness if 
slight bias in base rate and other inferred latent values are not considered 
harmful. Such judgment calls, of course, depend on the aim of the study 
and the current state of knowledge. For example, merely showing that a con- 
jectured taxon exists and that it has a base rate in a certain range, e.g., . I0  < 
P < .3O, might be valuable in appraising the DSM categories; whereas in test- 
ing a specific genetic model of schizotaxia, one would want P to be inferable 
with considerably higher precision than that. We repeat, however, it is pref- 
erable to select and construct indicators whose nuisance correlation is "safe- 
ly" low, pretesting this auxhary conjecture directly as described above. 

RATIONALE FOR MAXCOV 
The MAXimum Covariance procedure looks at the covariance5 of two 

output indicators within successive intervals on a third input indicator. If 
the latent structure is taxonic (and there is sufficiently little or no nuisance 
covariance), that covariance graph increases in the vicinity of greater taxon- 
complement mixture; if the latent structure is nontaxonic, the covariance 
graph is relatively flat. 

The core idea motivating the procedure is that, if two observable vari- 
ables ("indicators") tend to discriminate, i.e., are valid for, a latent category 
("taxon") and they do not covary otherwise (no "nuisance correlation" with- 
in the latent classes), then any observed correlation is due solely to category 
mixture. Hence, subpopulations that are "pure" (unmixed, consisting only 
of taxon or of complement class members) w d  exhibit no manifest indicator 
correlation, and "mixed" subpopulations w d  show correlations whose size 
varies with the mixture. The most "mixed" subpopulation being an even 

'That most recent statistics texts used by psychologists d o  not index tht. rerm 'covariance' as 
such, without reference to analysis of covariance (ANCOVA), is slop y wrlrlng or indexing, in- 
excusable I~edsgogy, perhaps attributable to the prevailing over-empKasis on f~sherian experi- 
mental dew .ns Cram6r (1946), Kenney (1939), and Li (1975) index 'covarrdnce,' as does Fisher 
himself In f 1 5  Statisttcol Me~hods for Research Workers (1970). The shortest definition of the 
Pearson corre!a:ion coefficient is "r=d,f ratio of the covariance of two variables to the geomec- 
ric mean of their variances." The dimensions of a covariance are those of the variables, e.g., dol- 
lars x IQ points, so, u d e  r, the raw covariance is not a pure number. 
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1 split p=q= 7 of taxon and complement cases, this latent subset ~ields  the 

largest observed indicator correlation. If subsets of cases are ordered along a 
third ("input") indicator, the observed covariance of the first two ("out- 
put") variables in successive intervals along the input inchcator will increase 
from zero to a maximum and then decrease to zero. The maximum is lo- 
cated at the even split, i.e., where there is the greatest "mixture," and, since 
this is where a diagnostic cut minimizes misclassifications (maximizing "hits") 
based on the input indicator, it is called the hitmax cut on that indicator. 
The observed covariance of the ourput indicators among cases in the region 
of that cut (hitrnax interval) is used co solve for a latent parameter (K), 
which in turn is used to infer the latent taxon/complement proportions in 
each interval along the input variable; and these estimated proportions allow 
us to compute estimates of the taxon base rate P and thelatent taxon and 
complement means. To accomplish this, we rely on the General Covariance 
Mixture Theorem 

which says that, for any group of cases, the yz covariance is composed of the 
taxon proportion p multiplied by the covariance of y7 in the taxon cases, 
plus the complement proportion q multiplied by the y7 covariance in the 
complement cases, plus the product of the taxon proportion, the comple- 
ment proportion, and the separations between the taxon and complement - - 

means on indicators y and 7. The Covariance Mixture Theorem is general 
because it holds for situations when there is nuisance covariance. i.e., corre- 
lation within the taxon cases or within the complement cases, and ~t holds 
for any subset or region of the data. A proof of the Covariance M~xrure The- 
orem underlying the MAXCOV procedure is given in Appendix A (pp. 
1140-1145). 

Although our Monte Carlo data were generated by a Gaussian algo- 
rithm assigning equal variances SD: =SD; = 1 to taxon and complement class- 
es, none of the core derivations underlying MAXCOV are thus restrictive. 
The conjectured structure (not an "assumption," see Meehl, 1992, pp. 135- 
136; Meehl & Golden, 1982) is highly general, that of two overlapping uni- 
modal frequency chstributions. The mathematics speaks for itself, and it was 
developed by Meehl with psychopathology in mind, where skewness and 
heterogeneity of variance are common. One relies on Monte Carlo samples 
to get an idea of random error in inferring the latent parameters. Unequal 
variances and unequal nuisance correlation have little effect on trustworthi- 
ness of estimations (Meehl & Golden, 1982, Table 5.2, p. 163). We antici- 
pate a later article in this series devoted wholly to "taxometrics under ad- 
verse conchtions" that, in addition to weak taxa and nonlinear moderator ef- 
fects, will study various extremes of distribution properties. 
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MAXCOV-HITMAX versus Generalized MAXCOV 
If there is no nuisance covariance, i.e., no correlation on the indicators 

within the taxon or complement groups, so that couyzt and couyzc in the cova- 
riance mixture formula are approximately zero, the interval of maximum 
covariance wdl be the place where half the cases are taxon members and 
half are complement members; the covariance is due solely to this mix (see 
Meehl, 1995a, p. 271). This is at the hitrnax cut, and we then use the MAX- 
COV-HITMAX procedure to estimate various latent parameters. If there is 
nuisance covariance, the interval of maximum covariance will reflect both 
the taxon/complement mixture and also nuisance covariance; in that case we 
may use generalized MAXCOV procedures to estimate latent parameters 
(Meehl, 1995b). Although we d examine some configurations with nui- 
sance covariance, we wdl focus on MAXCOV-HITMAX in this article. 

THE MONTE CARLO SAMPLES 
Twenty-five Monte Carlo samples have been generated for each of vari- 

ous taxonic and nontaxonic configurations. For instance, there are taxonic 
configurations with different base rates and with different sample sizes and 
nontaxonic configurations with different factor loadings on the variables. 
Each sample has four continuously distributed variables (another procedure 
in the coherent cut kinetics method requires that many); although MAX- 
COV needs only three, more variables may be used when they are available. 
Each sample has a coded name indicating the particular configuration plus 
its unique sample number. The reader does not have to learn the coded 
names, but they are used in some places so that those who want to locate 
particular samples may do so. Monte Carlo results for only some samples are 
given in the text; results for all 25 of the samples for each configuration may 
be found in the appendices. A detailed description of the creation of these 
samples is given by Meehl and Yonce (1994, p. 1066-1068) when they were 
used in Monte Carlo tests of MAMBAC, a procedure which detects taxonic- 
ity and estimates parameters using two indicators. The reader who would 
ltke to see how a particular sample (or 25 samples for a particular configura- 
tion) performs on different taxometric procedures can compare them in the 
two articles. 

CALCULATION OF MAXCOV VALUES 
The first step is to draw a MAXCOV graph. Using three continuously 

distributed indicators, designate one of them as the "input" indcator and 
demarcate successive intervals along that indicator; within each interval, cal- 
culate the covariance of the other two (designated as "output") inhcators, 
and graph the resulting covariances across the intervals. The input indicator 
is used merely to locate the cases which are to be used in calculating the co- 
variance between the output indicators. 
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couyZ for subjects in the first interval on x 

h 
C O U ~  for subjects in 

couyr for subjects in h e  second interval on x the last interval on  

Input x :  1 I I I I I I I I I I I I 

Intervals: First Second.. . . . . Last 

Each continuous indicator is taken as the input indicator in turn; the other 
indicators are used in all possible pairs as output indcators. With the four 
continuous indicators (x, y, z, v) in our Monte Carlo samples, there are 12 
possible input/output,, output2 combinations, hence 12 MAXCOV graphs 
for each sample. First, x is used as the input indicator and y and 2 are used 
as output indcators, denoted as covy,(x); then x can be used as input with y 
and v as output, denoted as cov,,,(x), and so on. 

Cuts along the input variable can be made on the basis of either stan- 
dard score units on the abscissa or number of subjects. Whichever of these 
ways we use, two considerations are relevant in choosing how coarse to 
make the intervals. Because the shape of /he graph of covariances is of major 
interest, there should be enough intervals, i.e., enough points on the output 
graph, to make that clear. On that basis alone, the more points (intervals), 
the better. But, of course, we need to have enough subjects within each in- 
terval to calculate a fairly stable value. Unless otherwise noted, the Monte 
Carlo runs in this article used intervals on the abscissa defined in .25 SD 
units around the observed mean of the input distribution: all subjects f a h g  
below -2.00 SD were considered to be in the first interval, subjects f a h g  in 
the interval -2.00 SD to -1.75 SD were considered to be in the second in- 
terval, and so on, to the top interval which was considered to be all subjects 
in the interval > 2.00 SD above the mean of the input distribution. Once this 
was done, a second requirement was imposed to help ensure that there 
would be enough subjects for calculating covariances in the extreme inter- 
vals; the program checked both ends of the input distribution and accumu- 
lated subjects (moving forward from the low end, backward from the high 
end) in the predefined intervals until there were at least 15 cases. That lo- 
cated the beginning and ending intervals for a single output graph. Thus, for 
example, for a given input variable, the first interval might include all sub- 
jects below -1.75 SD from the observed mean of that variable. Fifteen was 
chosen (more or less arbitrarily, based on observations from initial Monte 
Carlo runs) as a minimal acceptable n for calculating a covariance. It was as- 
sumed that, since we were workmg in standard deviation units, once we had 
that many subjects, we would be "into the mput distribution," so to speak, 
and could usually count on having suffic~enc subjects in successive middle 
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intervals to calculate a covariance for each interval. This resulted in about a 
dozen intervals along each input variable for samples with N=3OO. Of 
course, some intervals within the range might have fewer than 15 subjects. 
For Monte Carlo tests of smaller sample sizes, the program was adjusted to 
handle a single interval with zero cases by averaging the covariances from 
the intervals on either side of it. This situation has occurred very rarely in 
our samples; we have encountered no cases where hvo successive "inside" 
intervals have zero subjects (which would cause our program to crash). 

MAXCOV graphs are frequently "noisy" and benefit from smoothing. 
ALI of the'MAXCOV graphs shown here are the raw data points with a 
smoothed curve drawn through them using the smooth function in S-Plus 
(Statistical Sciences, 1993) graphical software; this is Tukey's 4(3RSR)2H 
method (Tukey, 1977, Chapters 7 and 16). Weighted means smoothing ('/2 
the value of a data point plus '14 the value of the precedmg and the succeed- 
ing points) also works well. A researcher might want to experiment with dd- 
ferent smoothing techniques or with different parameter values for some 
techniques, e.g., with lowess the fraction of data used for smoothing each 
point is 2/3 by default in S-Plus software, but MAXCOV curves show better 
definition with a smaller value. 

The dimensions of covy,(x) are set by the nature of the indicators- 
physical, psychological, economic, or whatever. A schizophrenia researcher 
might deal with covariates y = T score on MMPI Scale 8 and x=m&seconds 
lag in the smooth pursuit eye movement (SPEM) visual tracking task, yield- 
ing a MAXCOV graph whose hiunax interval peak could be covyz(xh) = 

(+)($) (20)(100) =500. The peak-valley difference here is 500 times that of 

our Monte Carlo graphs, where the hitmax interval value of covy,(xh) for a 2 
SD separation is around 1.00. The threshold question "Taxonic or nontax- 
onic?" is presently answered inspectionally by investigators who have con- 
templated curves such as we present in this article. Meehl and Yonce (1994) 
demonstrated near perfect inspectional sorting of MAMBAC curves by both 
psychologists and nonpsychologists. The MAXCOV graphs are, if anything, 
even more clearly taxonic. For all but the weakest situations, the difference 
between the taxonic and nontaxonic curves is so clear that any "reasonable" 

T h r e e  psychologists and two persons with no statistical training (BAS in Latin and in interna- 
tional relations) sorted 90 panels of MAXCOV curves from nontaxonic samples and taxonic 
samples of various base rates and separations-a total of 450 inspectional judgments-without 
error. Researchers who distrust inspection may wish to test [he "flatness" of a nontaxonjc-ap- 
pearing curve by whatever statistic they refer, e.g., F test or departure of a straight h e  from 
zero slope. We are workmg on an algoritEm for the taxonic/nontaxonic decision for use in situ- 
ations in which skilled user's inspection may err too often. The present plan is to £it a polyno- 
mial, probably a quartic, and examine the coefficients. "Reasonable" h e a r  transformations of 
the metric seem to leave the taxonic/nonraxonic distinction fairly clear from the polynomi- 
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graphing procedure will yield patterns sufficiently similar to ours, keeping in 
mind that the curve shapes and hd-valley depths perceived by inspection 
depend on the graph's physical distances rather than the numerical units em- 
ployed. 

Although the raw metric of indicators can probably be safely employed, 
it may be desirable to standardize for reasons of long-run famharity in the 
scientific community-so that many workers may develop a good inspection- 
a1 flair. (Historical example: During the long period when the Stanford-Binet 
IQ was defied as the MNCA ratio, its standard deviation varied somewhat 
over chronological age groups, but psychologists and teachers &d develop a 
rough subjective-but-shared notion of its meaning after reading numerous 
research studies and working with many children.) The simplest suggestion, 
already adopted by some users of MAXCOV, is to standardize all indicators 
in (manifest) SD units. This wdl not relate [he graph's hill-to-valley depths to 
the abscissa SD units in exactly the same ratio as ours because our standard- 
ization metric for these Monte Carlo runs is in latent SD units, a metric un- 
known to that investigator, but the dLfference involved is less than the dif- 
ference in our Monte Carlo runs between large and small separations. (Ex- 
ample: Assume latent separations were to vary over studies from 1 to 2 SDs 
and base rates from P=.10 to P= .50. Then investigators would have to in- 
flate the vertical dimension's numerical values by a factor of 1.18 to 2.00 to 
make the graphical distances comparable to ours, and they woitld have no - - 

way of accurately determining which dilation factor to employ.) 
Pseudocode for calculating MAXCOV using four continuously distrib- 

uted indicators and defining intervals on the basis of abscissa intervals and 
on the basis of deciles is given in Fig. 1. This was extracted from the Modu- 
la-2 (LOGITECH, Inc., Version 3.0) program used for the Monte Carlo 
graphs reported here. The code for calculating MAXCOV in successive dec- 
iles and plotting the graph with S-Plus, an interactive graphical analysis soft- 
ware program, is given in Fig. 2. Examples of the characteristic resulting 
taxonic and nontaxonic graphs are also shown there. It may be noted that 
using deciles to define the intervals is not a good idea when there is reason 
to expect a small base rate; this will be explained below. 

DETECTION OF TAXONICI~ WITH MAXCOV 
If the underlying structure is taxonic, graphs of the conditional covari- 

ances generated by MAXCOV tend to be peaked, with the location of the 
peak depending on the latent base rate. A base rate of .50 (half taxon mem- 

a1 coefficients, especially relying on the mathematical fact that the painvise rafios of polynomial 
coeficients are invariant under linear transformation of the metric. Meanwhile, coherent results 
corroborate inspecrional inference for doubtful graphs. 



1102 P. E. MEEHL & L. J. YONCE 

Pseudocode from MAXCOV program used in Monte Carlo runs 

Input/outputl,output2 combinations: xyz, xyv, xzv, yxz, yxv, yzv, zxy, zxv, zyv, vxy, vxz, vyz 

FOR each input/outputl,output2 combination D O  
Get covariance by .25 SD interval cuts on input 

Determine possible intervals around observed mean of input indicator: 
< - 2.00; - 2.00 to < - 1.75; - 1.75 to < - 1.50; . . . 1.75 to < 2.00; 2 2.00 

Check the intervals at each end of the input distribution and move inward until at least 
15 cases are accumulated at each end; this def ies  the FIRST and LAST interval for 
which a covariance will be calculated 

FOR each interval i from FIRST to LAST D O  
n : = number of cases in interval i 
Zoutl : = sum of the outputl scores paired with cases in i 
Zoua : = sum of h e  output2 scores paired with cases in i 
Zoutl,out2 : = sum of the product of output1 score and output2 score associated with 
each case m i 

(n) (Zoutl,out2) - (Xoutl) (1out2) 
Covoutl,oua :=  

n2 
END (* for each interval *) 

Plot obtained covariances over intervals; smooth curve 

Get covariance by decile cuts on input 
Sort scores on input indicator, keeping output scores properly associated with each 
input score 

Determine the number of cases in each decile (depends on N) 
Proceed as above using successive deciles as the intervals 

END (- for inpudoutput combination *) 

(* It will be helpful later to have saved the midpoint value, the covariance, and the observed 
number of cases in each interval *) 

FIG. 1. Pseudocode for MAXCOV 

bers and half complement members) gives a peak in the center of the ob- 
served input variable dstribution. A nontaxonic latent structure results in 
graphs that are generally flat. Fig. 3 shows the MAXCOV curve shape for 
the error-free (Gaussian) situation when the taxon base rate is .50, the tax- 
onic separation on each variable is 20, and there is no nuisance covariance. 

MAXCOV curves from Monte Carlo samples are shown in Fig. 4. The 
panels in the top row are from 10 taxonic samples. Intervals on the input 
variable were defined by .25 SD units around the observed mean of the in- 
put variable. Each panel shows the 12 curves (offset for visual &splay) gen- 
erated by four variables for a single sample. Superimposed on the points are 
smoothed curves using Tukey's 4(3RSR)2H twice method. MAXCOV curves 
from nontaxonic samples are shown in the lower row of panels. Because tax- 
onic separation generates correlation between the variables (even though 
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FIG. 2. S-Plus code and MAXCOV curves 

S-Plus code for MAXCOV using decile intervals on the input indicator 

# start with a data vector "xyz" composed of indicators x, y, and z arranged in three columns 
# to use x as input, c o v ( ~ z )  as output, sort on x, assumed to be in column 1 of "xyz" 

soctedx <- (xyz [sort.list(xyz [,I I ) ,I ) 

N <- length(sortedx [,I1 ) # define N as h e  number of cases 
# (N = 600 for the sample graphs below) 

MAXCOV <- vector ('numericV,N) # define a vector to hold the MAXCOV values 

# in successive intervals d e h e d  by deciles (N/10) on x, get the covariance of y, z 

for (i in seq(1,N-N/lO,N/lO) ) I 
MAXCOV[i] <- var(sortedx [(i : (i + N/10) ),21 ,sortedx [(i : (i + N/10) ),31) ) 

# create a window, plot the MAXCOV values, and overlay the points with a smooched curve 

win.graph ( ) 

plot (MAXCOV[seq(l,N - N/lO,N/lO) I ) 
lines (smooth (MAXCOV[seq(l,N-N/10,N/10) I ) ) 

# Examples of curves that might be obtained: 
# (the nontaxonic example is   lotted on a y-axis comparable to that of the taxonic case) 

# If xyz data are Taxonic If xyz data are Nonraxonic 

they are uncorrelated within the taxon and within the complement groups), 
we imposed factor loadrngs on variables in the nontaxonic samples that 
would generate a comparable correlation. In the taxonic samples shown in 
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Fig. 4 the expected rii= .50 (for P= .50, 2 SD separarlon on each variable, 
and no nuisance covariance; see Appenhx B, pp. 1146-1 147). In the nontax- 
onic comparison samples, factor loadings of ,707 on each variable generate 
the same expected ri= .50. 

Intervals on Input Indicator 

FIG. 3 .  MAXCOV error-free curve sha e (solid Line) for P=.5O, 2 0  separauon on each 
indicator, and no nuisance covariance. The lotted line is the nontaxonic situation when r , j=  
.50. 

We have shown curves from only 10 samples of each configuration (tax- 
onic and nontaxonic) in Fig. 4. They are unselected, i.e., they are merely the 
first 10 samples from each of these two Monte Carlo configurations. To see 
the difference between curves generated by a taxonic versus a nontaxonic 
configuration, any panel in the top row could be compared with any panel 
in the bottom row. Curves from all 25 samples that have been generated for 
these configurations may be found in Appendix C, pp. 1148-1177 (the first 
10 panels there wdl be identical to those in Fig. 4). 

Clearly MAXCOV detects taxonicity for the samples shown here. Curves 
from taxonic samples are peaked in the middle. The nontaxonic curves are 
relatively flat. 

Effect of Dzffeerent Methods of Cutting on the Input Dktribution 
Another way to define intervals along the input variable is by number 

of cases (histogram areas). Fig. 5 shows the same samples as in Fig. 4 but 
using deciles to determine the intervals along the input variable. This gives 
us 10 points for each MAXCOV graph and a predetermined number of 
cases within each interval. With larger samples, one might use finer cuts, 
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FIG. 4. Detection of taxonicity with MAXCOV using .25 SD intervals on the input indi- 
cator. Top panels are from taxonic samples: N =600, P= .50, 2 SD separauon on each indicator, 
no  nuisance covariance, r;i=.50 (because of complement-taxon mixture). Bottom panels are 
from nontaxonic samples: A1=600, r;i=.50 (from factor loadings of .707 on each variable). 
These samples are also used in Fig. 5. 

e.g., vigintiles, and increase the number of points on the output graph. 
When the base rate is near .50, there is no particular reason to prefer one 
way of defining the intervals. However, when the base rate becomes smaller, 
decile intervals can mask the peak interval. For instance, if the base rate 
were P=.10 and decile intervals were used, the most extreme situation 
would be if all the taxon members were in the last interval (an unkely 
event, but one that could happen because of sarnphg error). In that case, 
there would be no interval with a mixture of taxon and complement mem- 
bers, hence no high point on the MAXCOV graph. In our experience with 
Monte Carlo samples, a small base rate gives a right-end cusp when decile in- 
tervals are used. Using abscissa intervals gives a better definition of the hit- 
rnax interval, and that is what we recommend when base rates are suspected 
to be small. Only MAXCOV graphs based on abscissa intervals are shown 
in the rest of this article. 
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FIG. 5.  Detection of taxonicity with MAXCOV using decile intervals on the input indica- 
tor. Top panels are from taxonic samples: N=600, P= .50, 2 SD separation on each indicator, 
no nuisance covariance, ri=.50 (because of' complement-taxon mixture). Bottom panels are 
from nontaxonic samples: N=600, rc=:50 (from facror loadings of ,707 on  each variable). 
Curves from these samples are also used m Fig. 4. 

Effect of Sample Szze 
Taxonicity may be detected with samples as small as N =  100 when con- 

htions are otherwise favorable (P=.50,  2 SD separation on the variables, 
and no nuisance covariance), but larger samples are strongly recommended. 
Monte Carlo results in Fig. 6 show how a larger N increases the stabihty of 
the curves and results in more intervals, hence more points on the MAX- 
COV graph, when abscissa intervals are used. Larger samples also give clear- 
er inhcations of latent nontaxonicity, as may be seen in Fig. 7. As w d  be 
seen later, estimates of the latent parameters are more accurate with larger 
samples. 

Effect of Base Rate 

As the taxon rate gets smaller, the MAXCOV peak shifts to the right 
(and if the taxon base rate were larger than .50, the peak would be shlfted 



FIG. 6, Effect of sample size N= 100, 200, 300, 600. AU samples shown here are taxonic: 
P= .50, 2 SD separation on each inhcator, no nuisance covariance, ry= .50 (because of comple- 
ment-taxon mixture). Curves from all 25 Monte Carlo samples for each sample size may be 
found in Appendix C (pp. 1148-1177). 

to the left of center). The error-free MAXCOV curves in Fig. 8 show this 
progression; in each case there is 20 separation on each variable and no nui- 
sance covariance. 

Fig. 9 shows Monte Carlo results for base-rate configurations: P=.50, 
P= .25, and P= .lo. The peak of the MAXCOV curve should be at  the loca- 
tion of the hitmax cut, and this is determined by the base rate. Larger 
samples show the effect more clearly, but curves from samples of N=300 
are usually dear (see Appendix C, pp. 1148-1177). The method of determin- 
ing intervals becomes important with lower base ra[es. For instance, if P= 
.I0 and deciles are used to define intervals, the MAXCOV curve will prob- 
ably show only a cusp at  the right end. Although a cusp often happens 
when abscissa intervals are used, particularly with smaller samples (see sam- 
ples with P=.10 and N=300 in Appendix C ,  p. 1162), there is a better 
chance that a peak wdl be discernible. 
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FIG. 7. Effect of sample size N =  100, 200, 300, 600. Samples shown here are nontaxonic: 
expected r ~ =  .50 (factor loadings of ,707 on each indicator). 

Notice that the nontaxonic curves in the right-hand panels of Fig. 9 do 
not become taxonic-appearing with higher factor loadmgs. It has been al- 
leged that this could be a source of pseudotax~nicit~; in fact, higher load- 
ings tend to be a source of error in the opposite direction. In taxonic situa- 
tions, large intracategory nuisance covariances tend to attenuate MAXCOV 
peaks so that they look less clearly taxonic, leadmg possibly to false negative 
inferences. In nontaxonic situations, the higher the painvise correlations, the 
lower will be the standard error of an output covariance, hence false posi- 
tives arising from samphg error WLU tend to be fewer. Pending adequate in- 
vestigation of the danger zone, researchers need not fear a protaxonic bias in 
the method arising from this source.' 

'The same reasoning holds for the MAMBAC procedure (Meehl & Yonce, 1994). Large intra- 
category nuisance covariances tend co flatten the MAMBAC gra hs for taxonic situations; high- 
er factor loadings in nontaxonic situations lower the random Buctuation in means defined by 
MAMBAC cuts. 
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Intervals on Input Indicator 

FIG. 8. MAXCOV error-free curve shapes for different base rates (no nuisance covariance 
and 2 0  separation on each i d c a t o r )  

Effect of Taxon Validity (Separation) 
Reduced separation between the variables leads to a lower MAXCOV 

peak. Error-free curves for ddferent separations are shown in Fig. 10. 
The top panels of Fig. 11 show MAXCOV curves for the first ten Mon- 

te Carlo taxonic samples with a separation of only 1.5 SD on each of four 
variables. Curves in the lower panels are from nontaxonic samples with com- 
parable expected correlation between variables. [See also Fig. 14 (p. 1115) 
which shows the effects of lower validities in addition to nuisance covari- 
ance.] Although the taxonic curves are less sharply peaked than they were 
with greater separation (compared with, e.g., taxonic curves in Fig. 4),  they 
are s t d  clearly distinguishable from nontaxonic graphs. 

Effect of Nuisance Covariance 
Error-free MAXCOV curves with different amounts of nuisance covari- 

ance are shown m Fig. 12. Curves are elevated as a whole, with the ends 
tapering off a t  a level on the y-axis that reflects the amount of nuisance co- 
variance. Numbers to the left in Fig. 12 indicate the amount of nuisance 
covariance in the complement group for each curve; those on the right show 
nuisance covariance in the taxon. When nuisance covariance is the same in 
both groups (solid h e s  in Fig. 12), the curves are symmetrical. The MAX- 
COV peak shifts shghdy to the right when there is greater covariance in the 
taxon group than m [he complement (dotted curves). 

Fig. 13 shows MAXCOV curves for Monte Carlo samples with a sepa- 
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P= .SO, manifest r,j = .SO 

P= ,251, manifest r,. = .44 

P= .lo, manifest rq= .26 

FIG. 9. Effect of base rate. MAXCOV graphs based on abscissa intervals. Samples on the 
left are taxonlc: N=6OO, 2 SD separation on each indicator, no nuisance covariance. Samples 
on the right are nontaxonic with expected r c  matching that of the taxonic samples in each row. 
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Intervals on Input Indicator 

FIG. 10. MAXCOV error-free curves for different amounts of separation (P= SO, no nui- 
sance covariance) 

ration of 2 SD on each of the four indicators and nuisance covariance added 
within the taxon and complement groups (N=600, P=50). (See also Fig. 14 
which ~Llustrates a combination of nuisance covariance and various vahdties 
for four indicators). It is clear that MAXCOV is fairly robust with respect to 
nuisance covariance, confirming Monte Carlo results reported by Meehl and 
Golden (1982, Table 5.2, p. 163). 

Combined Effects of Reduced Validities and Nuisance Covariance 
The tasonic Monte Carlo samples in Fig. 14 (p. 1115) demonstrate the 

effects of both nuisance covariance and different validities for the four 
variables; these samples were generated to provide a dehberately difficult 
test for detecting taxonicity. Again, the MAXCOV peaks are usually attenu- 
ated, but the graphs are still distinct from those from nontaxonic samples. A 
naive ("nonstatistical") sorter would make no errors in classifying panels by 
inspection, having been shown a few examples. 

Dichotomous Output Indicators 

The use of &chotomous output indicators in MAXCOV was suggested 
by Meehl (1965, pp. 12-15). It is formally identical with the (preferred) 
quantitative output case because the General Covariance Mixture Theorem 
is a distribution-free algebraic identity, holding for any pair of real number 
variables, including those which take on only two values y = 0, y = 1. The nu- 
merator of a @coefficient (p,- pipj) is, of course, a covariance, literally. The 
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FIG. 11. Effect of reduced indicator validity on MAXCOV curves. Intervals are based on 
abscissa distances. Top panels are from taxonic samples: N=600,  P=.SO, 1.5 SD separation on 
each indicator, no nuisance covariance, expected r . . -  ecause of complement-caxon mix- 
ture). Bottom panels are from nontaxonic samples: ! 6 = ~ ~ O , ( ~ x p e c t e d  rG=.36 (from factor load- 
ings of .60 on each indicator). 

proportions pi and p, are, algebraically, arithmetic means of variables that 
take on only values O and 1. Plotting (pG-pip,) is plotting a covariance 

mv(yz )  = ($ Cyz - JJ when y and z happen to be two-valued. 

Extensive Monte Carlo tests have not yet been done, but several studies 
have used MAXCOV with dichotomous output variables (e.g., Harris, a c e ,  
& Quinsey, 1994; Haslam & Beck, 1994; Korfine & Lenzenweger, 1995; 
Lenzenweger & Korfine, 1992; Strube, 1989; T r d ,  Widiger, & Guthrie, 
1990; Tyrka, Cannon, Haslam, Mednick, Schulsinger, Schulsinger, & Parnas, 
1995; Waller, Putnam, & Carlson, in press). The first was by Gangestad and 
Snyder (1985), who used an 8-item scale of self-monitoring, repeatedly re- 
moving two items for use as dichotomous output indicators with the 
remaining six items serving as the quantitative input indicator. Because the 
sampling variance of a "mean" pi is considerably larger (as a proportion of 
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its true value) than is the sampling variance of 7 as a proportion of its true 
value, Gangestad and Snyder averaged estimates of the latent frequencies 
over the item pair covariances to reduce the instabihty. Averaging fahble 
MAXCOV estimates of the same latent values obtained from different pairs 
is an obvious way to pool estimates that are not identical and to cut down 
on samphg error. We have not used averaging in this way in our Monte 
Carlo runs with quantitative output indicators. 

Intervals on Input Indicator 

FIG. 12. Error-free MAXCOV curves for different amounts of nuisance covariance (P= 
30, 20 se aracion on indicators). Nuisance covariance in the corn lement group is indicated at 
the leh o r t h e  curves; taxon nuisance covariance is at the right, Lotted curves have different 
amounts of covariance in the two groups. 

Often researchers using dichotomous output indicators have included a 
nontaxonic control graph that is expected to be flat or additional graphs 
clearly expected to be taxonic and to have an expected base rate, hence to 
peak in a certain place. For instance, T r d ,  et al. (1990) generated a nicely 
flat (as expected) graph for dysthymia, a peaked (near the center, as expect- 
ed for their sample) "control" graph using gender, along with their graph of 
the taxon of major interest, borderhe personahty disorder; the latter was 
cusped at the high end as expected for a small base rate taxon (though this 
curve was misinterpreted by those authors). 

There has been some concern about the danger of spurious results 
when using &chotomous output pairs. What is the source of this concern? 
Why would cov(yz) be peaked for (pii - pip,) but not if the variables are 
quantitative? If we are d e a h g  with items which all have the same difficulty 
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FIG. 13. Effect of nuisance covariance on MAXCOV curves. Intervals are based on ab- 
scissa distances. Top panels are from taxonic samples: N=600, P= .50, 2.0 SD separation on 
each indicator, equal nuisance covariance in the complement and taxon groups enerated by 
adding factor loadings x =  7 0 ,  y = 3 0 ,  r = .40. u =  2 0 .  Expected correlations (res$ting from a 
combination of complement-[axon mixture and the factor loadings on the indicators): rq= .68, 
r ,= .64, r,= 5 7 ,  ry,= .GO, rYu= .55, r,,= .54. Bottom panels are from nontaxonic samjles: 
8 = 6 0 0 ,  expected rV values equal to those in the taxonic samples by imposing factor loa lngs 
on: x =  3 4 ,  y = .79, z = .77, u =  .69. 

level, very steep dscrirnination ogives are also needed to give spurious re- 
sults. No real personality test items are llke this, even if one tries to so con- 
struct them-they are never so "by accident." The easy check if this worry 
arises is, of course, to compute the item difficulties and plot the ogives. 

Despite the impressive results that have been obtained by investigators 
using dichotomous outputs, we retain a strong preference for quantitative 
output indicators until more adequate Monte Carlo tests have been done. 
Since disparate marginal splits impose an upper limit on $-coefficients, if for 
some reason such disparities were empirically correlated with item ddficulty 
levels, an artefactual danger might arise when Qv between dichotomous out- 



put indtcators is the MAXCOV index. The danger of finding a "false tax- 
onic" MAXCOV hump or cusp as a psychometric artefact due to an unfor- 
tunate pattern of dichotomous item parameters remains to be thoroughly ex- 
plored. 

FIG. 14. Combined effects of nuisance covariance and various validities of 2.0 SD separa- 
tion or less on MAXCOV curves. Intervals are based on abscissa distances. Top panels are 
from taxonic samples: N = 600, P= .50. Factor loadings added to the taxonic samples: x =  .70, 
y=.50, z =  .40, u=.20; separations: x=2.00,  y = 1.75, z =  1.50, u =  1.25. Ex ected correlations (re- 
sulting from a combination of complement-taxon mixture and the factor Yoadings on the indica- 
tors): rq=.65, r,,= 58, rm=.46, ryz=.52, ry,=.41, r =.37. Bottom panels are from nontax- 
onic samples: N =600, expected r t  values equal to &se in the raxonic samples by imposing 
factor loadings o n  x - 85, y = .76, z =  .68, u=  .54. 

THE HITMAX INTERVAL 
Once we have determined from the MAXCOV curve shape that the la- 

tent structure of the data is taxonic, we can proceed to estimate the latent 
parameters. To do this we first estimate a latent (unobserved) validity con- 
stant value K ,  defied as the product of the differences between the latent 
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means of the output variables (7, - &)(% - G). Of course, we do not know 
these latent means, hence we cannot know K directly; however, there is a 
way that we can estimate this value. 

Theoretically, the maximum covariance occurs where there is the great- 
est mix of taxon and complement cases. When the base rate for the entire 
sample is .50, this maximum-mixture interval wdl be near the center of the 
MAXCOV curve; the maximum-mixture interval d be shifted to the right 
if the base rate is less than one-half (or to the left if the base rate is greater). 
If we were to call everyone f a h g  above the maximum covariance interval a 
taxon member and everyone falltng below it a member of the complement 
group, this would maximize our correct classifications, hence the term hit- 
max interval. Locating the hitmax interval is important because we can say 
certain things about it that make possible the parameter estimates to follow. 
Within this interval of maximum covariance is the point at which the latent 
distributions, one made up of complement cases and the other made up of 
the taxon cases, intersect. Thus, within the hitmax interval there are equal 
numbers of taxon and complement cases; 50% of the observed cases in that 
interval belong to each group. Fig. 15 shows a smoothed frequency distribu- 
tion (what the researcher would observe) of a taxonic sai'ple and the two 
latent curves that underlie it (not observed but only inferred by the re- 
searcher and to be estimated by the procedures o u h e d  below). The hitmax 
interval is marked by vertical h e s ;  the hitrnax cut is that point on the x-axis 
where the two latent curves intersect within the hitmax interval. 

We locate the hitmax interval by the peak of the MAXCOV curve, 
where the covariance is at a maximum. Within the hitmax interval, we have 
an observed (yz)-covariance (either smoothed or unsmoothed; unsmoothed 
values were used in the estimations reported here). From the covariance 
mixture formula, we know that within any interval 

where p is the probability of taxon members within a single interval and q is 
the probabdity of complement membership. If we assume there is no nui- 
sance covariance, i.e., that cou,,, 2 O and couyzc 2 0, then 

This is the validity mzkture term, the one that is going to do the work for us. 
It is called that because, if there is no validity (separation on the indtcators), 
the term wdl be zero; likewise, if there is no mixture of taxon and comple- 
ment cases (p=O or q=O), the term w d  be zero. Since the taxon ordmate 
equals the complement ordinate (because the distributions intersect) at the 
hitmax cut, the proportion of taxon cases in the hitmax interval equals the 
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Indicator Value 

FIG. 15. A smoothed frequency distribution (solid line) and the Frequency disrributions 
for the complement (-1 and taxon ( .  . ) distributions chat make up the total sam le These 
curves were drawn from a taxonic Monte Carlo sample of N =  1000 with n base rate 8=.30. 

proportion of complement cases in that interval. So in that one interval we 
have 

If we define the v d d ~ t y  constant K as the product of the separations, 
( X  - K)(?[ - Sc) ,  then in the hiunax interval 

Thus, the K value to use in making parameter estimations for a given triad 
of indcators is the covariance observed in the peak interval times 4. This 
calculation is included in the pseudocode given in Fig. 17 below. 

Information about the accuracy of K estimates for our Monte Carlo sam- 
ples is given in Appendix D (pp. 1178-1180). In general, estimates of K are 
more accurate with larger sample sizes, base rates closer to .SO, and larger 
taxonic separations on the indicators. The effect of nuisance covariance is 
not clear from the h i t e d  Monte Carlo configurations we have tested. When 
it occurs in equal amounts within both groups and separations are good, it 
seems to have little effect on the K estimates, but when it occurs in varying 
amounts and in combination with reduced vahdities the effect is not clear. 
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When Latent Distributions Do Not Intersect 

An unfavorable combination of low base rate and small separation may 
prevent the existence of a hitmax cut as defined because the latent fre- 
quency curves fail to intersect, the ordmate f,(x) exceeding f,(x) for all x, as 
illustrated in Fig. 16. There is then no cut x, such that diagnoses of individ- 
uals scoring x, >x, tend to be correct more often than not. The big 
complement distribution "swamps" the smaller taxon distribution through- 
out the empirical range, so that even the highest ordinate of f , ( x )  is exceeded 
by f,(x) at that point. If classification errors of both kinds are equally impor- 
tant (we do not here consider chical  disuulities but only theoretical re- 
search aims), it is never rational under this condition to diagnose an indvid- 

ual case as belonging to the taxon because p,(x,) < f for all x; (Meehl, 1956; 

Meehl & Rosen, 1955). 

Indicator Value 

FIG. 16. A "swam ed" [axon distribution (dotted line), f&g wholly beneath the corn- 
plement distribution (sol?d line) 

But this undesirable state of affairs does not prevent a taxonic MAX- 
COV peak from appearing in the manifest graph of cov,,,(x), since the 

I validity mixture term p,qiK d show a maximum when p, is as close to 7 

as it can be. Despite p < q  therein, this MAXCOV interval is a "quasi-hit- 
max" interval, in the weak sense that were one to call all its cases taxon 
members-rational if it were a true hitmax interval, as it would be to call 
them all complement, or to llrp a coin for each decision-the hit rate of 
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those calls would be as close to as could be achieved in any interval. De- 

parting from calling "complement" for each case wdl yield fewer misses 

(although miss rate > $) in the MAXCOV interval than anywhere else. 

The investigator, treating this apparent "hitrnax" interval as usual, 
solves for the valihty constant K,, as if it were 4 covma, ; but since the pq re- 

lied on is actually < f, the K is too small. E x a m p l e :  Suppose the taxon or&- 

nate at the taxon mode is only 415 as tall as the complement ordinate at that 
point, so the taxon probability in a small interval containing it is 4/9= .44. 
Then the pq wrongly assumed to be .25 is actually (.44)(.56) = ,2464, a small 
discrepancy resulting in a propagated error of less than 2 %  in K. Suppose 
the "swamping" is so bad that the complement ordinate is twice that of the 
taxon at the latter's peak; then p,(,,,, = .33, pq = .22,  yielding a propagated 
error of 11% in K. T h s  error in inferring K, while larger than one would 
ready  accept, is nevertheless tolerable because it leads to partly countervail- 
ing errors in drawing the latent distributions. That there wdl be a sufficient 
number of intervals to the right of hitmax for some countervahg effect is 
~lausible because a "weak" taxons involves small separation, hence the tax- 
on mean d usually be constrained toward the center-a MAXCOV hump 
rather than a top-interval cusp. 

The swamping danger associated with small base rate w d  be warded 
off by sufficiend~ large separation, and conversely. Table 1 shows some rep- 
resentative combinations of base rates and separations that are just sufficient- 
ly adverse to begin swamping, i.e., PQ, (xi) =f,(xi) =fc(x;) = QQc(xi) 
where the +s are Gaussian densities at the taxon mode. 

TABLE 1 
SOME BASE RATE AND SEPARA~ON COMBINATIONS AT WHICH TAXON SWAMPING BEGINS 

SD Separation 
1.00 1.25 1.50 1.75 2.00 2.25 

P Value .38 .3 1 .25 18 .12 .07 

'We use the term 'weak' to describe a taxon whose taxometric detection is difficult due to low 
base rate, small indicator separation, or an unfavorable combination thereof. The extent to 
which such detection-weakness also tends to be associated with poorer accuracy in estimation 
of the latent parameters is unknown but we presume there is an appreciable relationship. Al- 
though this convention concerning 'weak' is conceptually e istemic--describing the state of evi- 
dence-that state of the evidence wdl, of course, occur unier certain ob'ective conditions, so it 
has an indirect (but nor definitional) ontolo ical overtone. For example, in a genetic taxon, 
such as schizotaxia, the base rate P reflects $e gene frequency in a specified population; and 
the taxonic separation on a psychometric or neurological indicator depends on how many and 
how strong are the modifiers and potentiators that influence the causal chain running from 
DNA to the indicator. 
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It is conceivable that the largest p,(x,) lies elsewhere than at the taxon 
distribution's mode, but it is very unlikely. For almost any weak taxon, the 
swamped taxon curve falls off to right of its peak faster than the comple- 
ment, since even if we are in a region where the within-complement density 
$c(x )  is deching faster than $,(XI, e.g., nearer the former's flex point than 
the latter's, the absolute value of the derivative Jf,'(x)l = IP$,'(x)l will be small- 
er than I fC1(x)l = lQ$,'(x)l given the "weak taxon" condtion that P<< Q. 

This kind of situation needs thorough analytic and Monte Carlo investi- 
gation. Although we have not explored our Monte Carlo samples for pos- 
sible swamping situations, neither has it emerged as a problem demanding 
attention. For now, we can only alert researchers to the possibhty, suggest- 
ing that incoherency may detect it. For example, do the latent frequency 
distributions inferred via MAXCOV agree tolerably with those delivered by 
MAMBAC? A sizeable x-region of cov(yz) near-flatness might suggest a 
swamping effect such that the latent distributions are decking at about the 
same rate, but we have no runs or analytic derivation of how special the 
conditions must be for this to occur. One would hope that, in a set of sev- 
eral indicators, some have separations sufficient to escape swamping even 
with a low base rate, permitting more trustworthy inferences when those in- 
dicators are used as input and appraising any questionable graphs in that 
light. 

ESTIMATING THE BASE RATE WITH MAXCOV 
Once we have an estimate of K calculated from the hitmax interval, we 

can estimate the taxon probability p in any other interval. The covariance 
mixture formula holds in all intervals and for whatever values of p and q 
within a slice. Although we do not know the means of y and r for the taxon 
and complement groups, we do know that they will be some fixed values, 
hence the K which we have calculated via the covariance in the hitmax inter- 
val wdl be the same, neglecting samphg error, in any x interval we choose. 
We can write a quadratic equation in variable pi (the probabhty of taxon 
members in an interval) for any interval x,: 

Kpiqi = covyZ(x,) 
Kp, (1 - p i )  - covyZ(xi) = 0 

Kp; - ~~3 - C O U ~ ~ ( X ; )  = 0 . 

Reversing signs, 

~,v:  - Kpi+ covy,(x;) = 0 

in any interval x,. 
Given the observed covariance values that we have calculated and 

which we used to plot the MAXCOV curve, we solve the quadratic Equa- 
tion [7]  for each interval, using the quadratic algorithm 
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and choosing the roots so that pi > f to the right of the hitmax interval, p i <  

I , to the left. Once we have p ;  for an interval, we multiply it by the ob- 

served interval frequency to get the estimated frequency of taxon cases in 
that interval, 

n,, = n i p ; .  [91 

Having the taxon frequency n,; for each m interval, we sum them to get 
an estimated taxon total in the sample, 

The ratio of this value to the sample size is our estimate of the base rate 

Pseudocode for MAXCOV base-rate estimates is shown in Fig. 17. We 
found it necessary to adopt two conventions when we calculated base-rate 
estimates for the Monte Carlo samples. First, small numbers and random er- 
ror can result in negative covariances, especially at the ends of curves where 
the "true" covariance is approximately zero. For each interval, cov= Kpiq i ;  
we know K#O (because the taxonic MAXCOV curve we have plotted tells 
us there is an underlying taxon with a mean greater than that of the comple- 
ment group, assuming the indicators were scored initially in the customary 
positive direction); thus, if the covariance is zero, it must be the case that ei- 
ther pi= O or q;= O. Our solution when negative covariances occurred was to 
infer "near purity" in such intervals and to assume that p , = O ,  i.e., no taxon 
members, all complement members, when a negative covariance occurred at 
the low end of the curve and pi= 1, i.e., all taxon members, if it happened at 
the h~gh  end. Second, random error sometimes caused a covariance to be so 
large that cov/K was greater than .25, which would lead to takmg the square 
root of a negative number. Our solution was to assume the term 
4- to be essentially zero (.001) when that occurred. 

Table 2 shows the average base-rate estimates for different taxonic con- 
figurations. The 12 individual estimates for each input/output combination 
for each taxonic Monte Carlo sample may be found in Appendix E (pp. 
1181-1 195). 
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TABLE 2 
AVERAGE BASE-RATE E s n ~ ~ 1 E . s  (AVERAGES OVER 25 SAMPLES PER MONTE CARLO CONFIGURATION) 

Sample Configuration N True Estimated Base Rate 
Base Rate M SD 

A1-50-20 2 SD separation on  each variable 100 .50 .49 .04 
A2-50-20 and no  nuisance covariance 200 .50 .49 .03 
A3-50-20 3 00 .50 .49 .02 
A6-50-20 600 .50 .49 .02 

A3-50-15 1.5 SD separation, no  nuisance 300 .50 .5 1 .06 
A6-50-15 covariance 600 .50 .50 .04 

N3-50-20 Nuisance covariance in both 3 00 .50 .49 .04 
N6-50-20 groups, 2 SD separation 600 .50 .49 .04 

D3-50.~1 Vrrious separations and nuisance 300 .50 .50 .07 
D6-50-vl covariance 600 .50 .49 .07 

A3-25-20 2 SD separation, no nuisance 300 .25 .24 .02 
A6-25-20 covariance 600 .25 .24 .02 

A3-10-20 2 SD separation, no  nuisance 300 .10 .13 .03 
A6-10-20 covariance 600 .10 .10 .O1 

ESTIMATING LATENT MWS AND VUIDITY (SEPARATION) 
In the process of estimating the base rate, we have obtained estimates 

of the number of taxon cases within the intervals. Subtracting these from 
the observed frequency in each interval gives us an estimate of the number 
of complement cases per interval. If we multiply the estimated taxon fre- 
quency by the interval midpoints and divide by the total estimated taxon 
frequency, we get an estimate of the mean of the latent taxon distribution. 
Similarly, we can use the estimated complement numbers in each mterval to 
get an estimated complemenr mean. Subtracting these estimates of the latent 
means gives us an estimate of the taxonic separation. Pseudocode for these 
steps is shown in Fig. 19. 

Because the taxon number in an interval is gotten by an estimated tax- 
on probabhty for that interval, the result is not necessarily a whole number. 
We opted to use the fractional numbers when calculating the estimated 
means. Another way would be to round to whole numbers of taxon or com- 
plement cases before multiplying by the interval midpoints. Our impression 
is that it makes little difference, but we have not explored how much differ- 
ence it does make with our samples. 

Table 3 shows the estimated latent means for our Monte Carlo samples. 
With four indicators, each sample gives three estimates of a latent mean for 
each indcator; there is an estimate for x when y and z are the output vari- 
ables, another when y and v are used, and a third when z and v are used. 
We took the average of these three as the estimate of the latent mean for a 
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FIG. 18. Frequency distributions of MAXCOV base-rare estimates for all of the Monte 
Carlo samples 

single sample. In Table 3 the values are further averaged across the 23 
Monte Carlo samples for each configuration, and it is those means and stan- 
dard deviations that are presented there. The estimates for individual Sam- 
ples may be found in Appendx G (p. 1197). All of the true complement 
means for the configurations listed in Table 3 are about zero, so those esti- 
mated means should be about the same. (Remember, we know the true com- 
plement and taxon means for these samples because we constructed them; 
the researcher would not have access to the true state of affairs.) The taxon 
means should all be about 2.00 except for samples with reduced validty, in 
which case the taxon means should be about 1.50, and samples with a com- 
bination of reduced validity and nuisance covariance; in the latter case, ex- 
pected means for the indicators are given in the table. The estimates are 
generally better with larger sample sizes and no nuisance covariance. The 



TAXOMETRIC ANALYSES: 11. MAXCOV 112.5 

notable exception is samples with a low base rate ( I J =  .lo); the complement 
estimates in such samples are good, but the taxon estimates (which should 
be about 2.00 in our samples) are lowered. 

PROCEDURE EstimateMeansAndSeparation 
(* This code presupposes a file containing interval midpoints, total number of cases in 

each interval, and the estimated number of taxon cases in each interval *) 

FOR each input/outpurl,outpucZ combination 
Read File containing midpoints of intervals, total observed number of cases n[il in 

each interval, and estimated number of taxon cases nTaxon[i] in each interval 

FOR each interval 
nComplement[il := n[il- nTaxon[il (a subtract taxon estimate from total n *) 

END (* for each interval *) (* to get complement n in each interval *) 

NTaxon := Z nTaxon[il 
NComplement := Z nComplement[il 

meanTaxon := X (midpoint[i] * nTaxon[il) / NTaxon 
meanComplement := 1 (midpoint[il * nComplement[il) / NComplement 

separation := meanTaxon - meanComplement 

END EstimateMeansAndSeparation 

FIG. 19. Pseudocode for estimates of means and separation 

As noted before, the algebra works whether or not the MAXCOV 
curves look taxonic. If parameter estimates were attempted when the latent 
situation is nontaxonic, estimates of the "complement and taxon means" 
would be located more or less symmetrically around the observed distribu- 
tion mean (see Appendix H, p. 1212); but without a taxonic MAXCOV 
curve these have no meaning. 

To estimate the validity, the taxonic separation, we simply subtract the 
complement from the taxon mean. The results for the Monte Carlo samples, 
averaged over the 25 samples for each configuration, are given in Table 4 
(results for individual samples in Appendix I, p. 1213). Expected separations 
should be about 2.00 SD in each case except for configurations with re- 
duced validities ('A. . . -15' and 'D. . . ' sample codes). Obviously, taxonic 
separation tends to be underestimated, more so with smaller samples, small 
base rates, and nuisance covariance. Notice that we now have another way 
of estimating the validity constant K. This provides us with a consistency 
test for the K estimates and wdl be discussed below. 

DRAWING THE LATENT CURVES 
Having estimated the number of taxon members within each interval 

and, by subtraction from the observed frequencies, the complement mem- 



TABLE 3 
ESTIMATES OF LATENT MEANS 

Monte Carlo Complement Taxon 
Configuration x Y z u x Y z u 

M SD M SD M SD M SD M SD M SD M SD M SD 

Sample Size 
N =  100 A1-50-20 .19 .14 .19 .22 .14 .15 .23 .17 1.88 .21 
N=200 A2-50-20 .11 .14 .04 .16 .05 .18 .07 .14 1.99 .14 
N=300 A3-50-20 .09 .I5 .05 .10 .02 .14 .07 . l l  1.99 .13 
N=600 A6-50-20 .06 1 3  .05 . l l  .05 .08 .04 .08 1.97 .10 

Different Base Rates 
P =  .25 A3-25-20 .06 .10 .03 .10 .08 .09 .05 . l l  1.92 .18 

A6-25-20 .03 .07 .05 .08 .06 .06 .06 .09 1.94 . l l  

Reduced Validity (raxonic separation is 1.5 SD, expected taxon mean is 1.50) 
A3-50-15 -.02 .20 .03 .16 -.06 .13 .OO .17 1.49 .19 
A6-50-15 .O1 .15 .04 .12 .03 .I4 .03 .15 1.49 .10 

Nuisance Covariance 
N3-50-20 .14 .17 .I4 .I3 .20 .18 .13 .15 1.88 .14 
N6-50-20 .07 .15 .10 .I4 .15 .13 .15 .19 1.93 .16 

Nuisance Covariance + Reduced Validities (expected taxon means: x=2.00, y =  1.75, 7 =  1.50, u= 1.25) 
D3-50.~1 .I2 .23 .09 .16 .05 .14 .08 .19 1.83 .22 
D6-50.~1 .20 .24 .I6 .16 . l l  .12 .08 .16 1.77 .24 
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TABLE 4 
ESTIMATES OF TAXONIC SEPARATION 

Monte Carlo Separation 
Configuration x Y z u 

M SD M SD M SD M SD 
Sample Size 

N=100 A1-50-20 1.69 .21 1.63 .21 1.69 .18 1.68 .17 
N=200 A2-50-20 1.87 .12 1.90 .15 1.85 .18 1.84 .17 
N=300 A3-50-20 1.90 .13 1.94 . l l  1.90 .17 1.89 .12 
N=600 A6-50-20 1.91 .18 1.93 . l l  1.91 .09 1.98 .08 

Different Base Rates 
P=.25 A3-25-20 1.86 .17 1.88 .16 1.86 . l l  1.84 . l l  

A6-25-20 1.91 .10 1.93 .14 1.84 . l l  1.87 .17 

Reduced Validity (expected separation is 1.5 SD) 
A3-50-15 1.51 .17 1.46 .17 1.53 .15 1.46 .17 
A6-50-15 1.49 .15 1.48 .16 1.38 .20 1.48 .17 

Nuisance Covariance 
N3-50-20 1.74 .19 1.76 .17 1.74 .14 1.75 .15 
N6-50-20 1.86 .24 1.85 .14 1.74 .20 1.72 .25 

Nuisance Covariance + Reduced Vahdities (expected separation: x=2.00, y = 1.75, z= 1.50, 
u= 1.25) 

bers, one could draw the latent complement and taxon distributions. Fig. 20 
dustrates latent curves drawn for one input inchcator using the three possi- 
ble output combinations for a Monte Carlo sample in which the base rate is 
S O ,  there is good separation on each indcator, and no nuisance covariance 
is present. This sample was unselected; it is merely the first one in that con- 
figuration. The taxon frequencies estimated to be in each interval (and used 
to draw the curves in Fig. 20) are shown in Table 5. As can be seen by the 
correlations of the estimated and true taxon frequencies, the MAXCOV pro- 
cedure does a very good job here. 

CLASSIFYING INDMDUALS 
In the first publication on MAXCOV, Bayes' Rule was applied in classi- 

fying individuals, using the inferred valid and false (+) and (-1 rates deter- 
mined by the hitmax cut on each indicator (Meehl, 1973, p. 214). This use 
of coarsely defined cut-determined probabilities throws away the informa- 
tion provided by varying taxon probabihties per interval. Using the latter in 
Bayes' formula often leads to a ddferent classification decision than the 
cruder approach. If an individual's two dichotomous signs x+, yC result from 
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Estimated Latent Distributions 

True Distributions 

FIG. 20. Estimated latent complement and taxon distributions on x using different output 
indicators and the true complement and taxon distributions 

scores xi>xh and yj>yh being in the first intervals above the x and y hitrnax 
cuts, and the third sign z- is associated with a z-indcator score lying in a 
very low z-interval, the coarse classification is "wrong," i.e., WLU err far more 
often than the fine one. Failure to mention this obvious point was due to 
two extenuating circumstances. At the time of that publication, Minnesota 
clinicians were preoccupied with optimizing cutting scores on MMPI keys 
and with configural rules that were usually inherently dchotomous, e.g., a 
specified Hathaway code, satisfying a Meehl-Dahlstrom rule, decision "pro- 
file invalid" by raw F >  16 or Gough's dissimulation scale Di, the Marks-See- 
man (1963) profile types which classed cases as "in" or "out" of a category. 
The emphasis was on vahd and false (+) and (-) rates-the epidemiologists' 
sensitivity and specifcity-as yielded by a cutting score, profile pattern, or 
dichotomous sign or symptom found in the medcal chart or interviewer 
checkhsts. Second, the author had little confidence in the statistical reliabil- 
ity of slice-probabilities (with the modest sample sizes then being used); add- 
ing taxon talhes over slices above and below xh seemed safe, but multiplying 
three unstable proportions estimated intraslice seemed dangerous. It is now 
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clear that this seemingly "cautious" line of thought entails discarding a large 
amount of information. We have not yet assessed the accuracy of these dif- 
ferent approaches to classdying individuals with our Monte Carlo samples. 
Just how trustworthy the inferred latent distributions (smoothed and raw) 
are is a complicated question we defer to subsequent publications. 

TABLE 5 
NUMBER OF TAXON CASES ESTIMATED TO B E  I N  EACH INTERVAL ALONG T HE x INPUT VARIABLE 

USING DIFFERENT OUTPUT ~NDICATOR PAIRS (MONTE LW.0 SAMPLE A6-50-20.1; 
2 SD SEPARATION ON EACH INDICATOR, NO NUISANCE COVARIANCE) 

Interval Total n True Estimated bv Outour Pair 

I 1  21 0 
2 16 0 
3 37 0 
4 28 0 
5 45 2 
6 50 8 
7 52 9 
8 58 28 
9 49 26 

10 4 1 32 
11 53 48 
12 3 7 3 6 
13 43 4 1 
14 34 34 
15 18 18 
16 18 18 
Total 600 300 
Correlation With True n 

CONSISTENCY TESTS 
A consistency rest is any numerical procedure capable of falsifying a 

conjecture as to latent (compositional or causal) structure or, given a struc- 
ture, capable of indicating that one's estimates of the latent parameters are 
untrustworthy. We rely on theorems asserting equalities or inequalities be- 
tween numerical values summarizing observations or among latent values in- 
ferred from observational statistics. There are several lunds of consistency 
tests (Meehl, 1995a, p. 272; Waller & Meehl, in preparation) that differ with 
respect to the mix of manifest and latent values with distinct inferential 
paths. The essential feature of a consistency test is that the theorem into 
which observed or inferred numerical values are inserted (to see whether the 
equality or inequahty is satisfied) is not a mathematical identity-necessarily 
satisfied by any numerical values we assign-but is derived from postulates 
that implicitly define the structural model we are examining. 
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For example, if x ,  y are observable variables ("indicators"), the relation 
2 

OY - X 
r 2 = l - -  holds for any least squares fitted straight h e  y=a  + bx (even 

0,' 

if a ~arabola should have been fitted instead!), hence it cannot serve as a 
consistency test of any structural conjecture or parameter estimate. The Gen- 
eral Covariance Mixture Theorem (Equation 1 supra) is in latent terms, but 
it is an algebraic identity, satisfied by any arbitrary partition of cases into 
two classes. Contrast these two identities with the grand covariance consis- 
tency test 

Cov(yz) = PQ(& - s ) ( f t  - & I  [I21 

which is not an algebraic identity except within the postulated taxonic model. 
If there is in fact no latent taxon, the taxometrically inferred values P, Q, y,, 
K, Tt, 5, do not denote (have no referent). In that case, there is no reason to 
expect that the left-hand term, when computed directly from the manifest 
variables, wdl "match" the right-hand numerical value when it is concocted 
from these six nondenoting numbers. 

How can a consistency test be nonredundant, not a mere tautology, 
since it relies on a theorem in the formalism? The short answer is that the 
theorem is not a theorem of general mathematics but of the formal postu- 
lates that define the latent structure. The interpretive text (Meehl, 1990a, p. 
109; 1990b, pp. 3-5) motivates the postulates and licenses some steps in the 
derivations; hence, satisfying multiple consistency tests can function to cor- 
roborate the substantive theory that the text asserts. Of course, the strength 
of this corroboration depends on how antecedently improbable (a Salrno- 
nean "strange coincidence," Meehl, 1990a) the numerical relation would be, 
absent any latent theory, given one's background knowledge, e.g., usual nu- 
merical range of the several observables (Meehl, in press). Consistency tests 
are based on vertical devivability (from structural postulates "downward") of 
theorems together with absence of horizontal derivability (numerical equali- 
ties required by general mathematical identities without the adjoined taxo- 
nomic postulates). 

The crucial role of consistency tests in Meehl's coherent cut kinetics 
method has been emphasized repeatedly (Golden & Meehl, 1973b; Meehl, 
1965, 1992, 1995a; Meehl & Golden, 1982; Meehl & Yonce, 1994). Coher- 

9A helpful clarifier here is Carnap's (1939) disrinction benveen the eneral calczilz~s (mathemat- 
ics, logic) and rhe rpecial calculus (additional formal ostulates of a tteory in em irical science). 
These adjoined postulates can be set out without tfeir interpretive text so, alttough a reader 
would recognize their special characrer, one would nor know which empirical science is being 
formalized. The ostulates are formulable in the general calculus, uninterprered, but they are 
not theorems of g e  general calculus. This question ties in with the meratheoretical concepts of 
construct vabdity, implicit definition, and bootstrapping, discussed by Meehl (1995a). 
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ent cut kinetics relies on the dependence of a statistic on the taxon/comple- 
ment mixture in subsamples of cases defined by an "input" indcator. Some- 
times the subsamples may be defined by successive intervals, sometimes by 
cases above and below successive cuts along the input variable. We w d  de- 
scribe briefly several possible consistency tests that could be used. Some in- 
volve procedures previously published; for others we offer the core intuitive 
reasoning and dustrative Monte Carlo results, reserving further and more 
rigorous mathematical development for subsequent articles. 

Agreement Between Parameters Obtained in Dzfferent Ways 

One consistency test suggested by Meehl (1965, 1995a, p. 272; Meehl & 
Golden, 1982, p. 165, Eq. 24) compares the observed grand covariances 
with those constructed using the estimates of base rate and latent separa- 
tions. If the parameter estimates are trustworthy and there is no nuisance 
covariance, we should be able to reconstitute the covariances. If there is no 
nuisance covariance, the grand covariance may be inferred by 

Cov, = PQKY &, [ I31 

and once we have estimates of P and the separations for x and y, we can cal- 
culate Cov,,, that way. How do these different estimates of Cov, compare? 
Table 6 shows summary data for the reconstituted minus observed covari- 
ances for different sample configurations. In our samples, the reconstituted 
covariance nearly always underestimates the observed covariance. With larg- 
er samples and base rates of .50 and .25 there is less discrepancy. As we 
would expect, there are larger discrepancies when there is nuisance covari- 
ance, because the model is then violated. This is a rich area for investigation. 
There are obviously relations between taxonicity, sample size, and amount of 
nuisance covariance. The correlations between reconstituted and observed 
covariances are higher in taxonic samples, but they are lowered due to range 
restrictions when samples are larger (and estimations are better). Perhaps it 
is possible to use the reconstituted/observed covariance discrepancy as an- 
other way of estimating nuisance covariance. The relationships also suggest 
further coherence checks: a researcher with adequate sample size can con- 
struct a new sample and see whether the discrepancy changes in a ~redicted 
manner. 

MAMBAC 
The MAXCOV-HITMAX procedure begins by locating the x-interval 

in which the observed (yz)-covariance is a maximum, inferring that in this 
1 

interval the mix of taxon and complement cases is greatest ( p i = q i = ? ) .  In 

the MAMBAC (for Mean Above Minus mean Below A Cut) procedure 
(Meehl & Yonce, 1994) we look at the other side of the coin, reasoning that 



TABLE 6 
RECONSTITUTED COVAR~ANCES MINUS OBSERVED COVARIANCES. MEAN DIFFERENCES FOR 25 SAMPLES I N  EACH CONFIGURATION 

Monte Carlo Taxonic Samples 
Configuration rY xz xu Y Z  Y U  zu r 

M SD M SD M SD M SD M SD IM SD 

Sample Size 
N =  100 (Al-50-20) -.26 .12 -.27 .12 -.28 .11 -.28 .14 -30 .I5 -.29 .12 .63 
N=200 (M-50-20) -.I4 .09 -.I5 . I1  -.I5 .08 -.I2 .I1 -.I6 .10 -.I3 .13 .59 
N=300 (A3-50-20) -.08 .07 -.09 .08 -.08 .07 -.I1 .I0 -.I0 .06 -.lo .07 .61 

N=600 (A6-50-20) -.09 .I0 -.09 .09 -.08 .I0 -.06 .07 -.04 .08 -.06 .05 .35 

Different Base Rates 
P= .25 

N=3OO (A3-25-20) -.I0 .10 -.I2 .09 -.I3 .07 -.I2 .07 -.I3 .10 -.I0 .07 .40 

N=600 (A6-25-20) -.08 .06 -.09 .08 -.09 .07 -.06 .08 -.09 .09 -.lo .I1 .36 
P= .10 

N=300 (A3-10-20) -.09 .08 -.09 .08 -.05 .07 -.08 Oh -.06 .09 -.06 .05 .28 

N=600 (A6-10.20) -.09 .06 -.09 .05 -.08 .06 -.07 08 -.08 .05 -.08 .05 .28 

Reduced Validity (taxonic separation is 1.5 SD, expected taxon mean is 1.50) 
N=3OO (A3-50-15) -.03 . I  1 .01 .10 -.03 .I2 -.01 .12 -.01 .09 -.03 .09 .22 

N=600 (A6-50.15) -.00 .08 -.06 .09 -.02 .09 -.04 . I0  -.02 .I0 -.06 .I1 .21 

Nuisance Covariancc 
N=300 (N3-50-20) -.58 .14 -.49 1 - 9  .14 -.42 . l l  -.35 .12 - 3  . I1  .14 

N=600 (N6-50-20) -.52 .14 -.48 .I5 -.36 .16 4 1 3  -.33 .15 - 3  .15 .35 

Nuisance Covariance + Reduced Validities (expected taxon means: x=2.00, y =  1.75, z= 1.50, u= 1.25) 
N=300 (D3-50.~1) -.57 .16 -.46 .14 -.28 .I4 - 3  . I0  -.21 .12 -.I5 .10 .62 

N=600 (D6-50.~1) -.65 .17 -.52 .16 -31 .13 -.36 .14 -.20 . l l  -.I7 .10 .48 

(continued on next page) 



TABLE 6 (CONT'D) 
RECONSTITLJTED COVARIANCE~ MINUS OBSERVED COVARIANCES, MEAN D I F F E R ~ N C ~ S  FOR 25 SAMPLES I N  EACH CONPIGURA~ON 

Monte Carlo Nontaxonic Samples 
Configuration XY xz xv Yz Yu ZU r 

M SD M SD M SD M SD M SD M SD 

rij= .50 (taxonic samples P= .50, 2 SD separation) 
N= 100 (C100) -.26 .09 -.28 .09 -.24 
N=200 (C200) -.27 .I0 -.27 .08 -.25 
N=300 (C300) - 3  .08 -34 .07 -.34 
N=600 (C600) -.41 .06 -.41 .07 -.42 

ri= .43 (taxonic samples P= ,251 
N=3OO (F300) -.26 .09 -.27 .09 -.24 
N=600 (F600) - 3  .07 - 3  .07 -.34 

r;i= .26 (taxonic samples P= .lo) 
N=300 (E3OO) -.07 .09 -.06 .09 -.04 
N= 600 (E600) -.I1 .07 -.I0 .08 -.08 

rij= .36 (taxonic samples separation 1.5 SD) 
N=300 (8300) -.21 .09 -.18 .08 -.I8 
N=600 (B600) -.27 .06 -.24 .06 -.26 

rii= varies (taxonic samples have nuisance covariance) 
N=3OO (N=300) -.48 .08 -.47 .09 -.41 
N=600 (N=600) -.59 .07 -.56 .06 -.50 

ri= varies (taxonic samples have nuisance covariance + reduced validities) 
N=3OO (D300) -.44 .08 -37 .06 -.28 
N=600 (D600) -.52 .09 -.46 .08 -.34 
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less mixture within cases above (or below) a sliding x-cut tends to increase 
the observed separation of y-means, the output statistic & (x) being graphed 
to discern that. The Monte Carlo samples used in this article are identical to 
those used in Meehl and Yonce (1994). The text and appendices of that 
monograph and the present one make it possible for any given sample to be 
examined for its ~erformance in these different procedures. 

MAXSLOPE 
Another procedure, MAXSLOPE (Grove & Meehl, 1993), is conceptu- 

ally similar to MAXCOV but requires only two variables and looks at the 
regression slope of one over successive intervals along a second (input) indi- 
cator. We have not run MAXSLOPE on all of the samples described in this 
article, but Fig. 21 ~llustrates the differences in the regression slopes for y on 
x for the first sample in a taxonic and a nontaxonic situation. MAXSLOPE 
also locates the hitmax cut and estimates the base rate and latent pararne- 
ters. 

Taxonic 

Nontaxonic 

. . 
3 

I I I 
-2 0 2 

X 

Regression of y on x 

dyldx o 

-1 

-2 

3 

-2 0 2 

X 

Regression Slope 

FIG. 21. MAXSLOPE graphs for taxonic (N=600,  P= .50, 2 SD separation) and nontax- 
onic (N=600, r,j=.50) Monte Carlo samples. The hitrnax cut is shown For the taxonic sample. 
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MinimizIng SSb + SS, 
The dispersion of (output) indicator y is a composite of the latent class 

dispersions and the taxonic separation (7, -LC). By analogy with MAMBAC 
and MAXCOV combined, if we locate an x-cut so as to minimize the "mix" 
wlthm rhe two subgroups identified as above or below x,, the resulting two 
y-dspersions should tend to be smaller than if the cut yielded less "puri- 
fied" subsets above and below the cut. Monte Carlo runs and the quasi- 
proof by Meehl (1968, pp. 32-39) indicate the sums of squares are better 
than the variances. Rigorous proofs will be presented in a subsequent article. 
Fig. 22 shows results for taxonic samples with different base rates, together 
with a shallow dish for the nontaxonic case. Here the P= .50 taxonic graph 
ratio (SS- - SSMIN) / SSMIN is over twice that of the nontaxonic dish 
("depth"), but whether a safe, robust decision rule for smaller separations is 
formulable awaits further investigation. Unpublished Monte Carlo work by 
Robert Golden encourages us to consider shifung SSb + SS,, when com- 
bined with study of the ordmary y . x regression h e ,  from a consistency test 
to a main search procedure. Meanwhile, the statistic should be treated as a 
marginal consistency test. 

so0 -( 1 800 . 

P=.10 Nontaxonic 

FIG. 22. Sums of squares below plus sums of squares above successive cuts on an "input" 
indicator for M e r e n t  base rates (all with N=600 and 2 SD separations) and for a nontaxonic 
sample (N = 600, r,; = .50) 
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Maximizing 4, iu x-interval 

The structural relations motivating MAMBAC and MAXCOV suggest 
yet another procedure that employs an input indicator to maximize an out- 
put statistic. Analogous to the general covariance mixture theorem on which 
MAXCOV-HITMAX relies (a variance is a "self-covariance"), there is a re- 
lation involving only a single output indicator, thus: 

2 
o ~ . = p , o ~ , + q , ~ ~ ~ + p , q i ( ~ ~ - ~ )  . [I41 

If the variances are equal, this quantity is maximized in the x-interval where 
I pi= qi= 7 (Robert R. Golden, personal communications, 2/15/75, 12/7/85). 

In the nontaxonic situation we expect no such clear "hump" in the output 
graph, and if the dependence of y on x is a h e a r  homoscedastic regression, 
while yi has nonzero slope, the graph of 0; is flat. Fig. 23 displays these 

relations for three base rates and for the nontaxonic case plotted on compa- 
rable axes. Whether minimizing SSb + SS, and maximizing 0;. in x-interval 

can also be employed as main procedures (yieldmg accurate estimates of P, 
hitmax cut, valid and false (+) rates, and separations) awaits investigation. 

Variance for Variable 

Nontaxonic 
C600.1 

FIG. 23. Variance of several output variables in vigintiles along an input variable x for dz- 
Eerenr Monte Carlo configurations 
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REsuMB 
We have demonstrated the MAXCOV procedure with a range of Mon- 

te Carlo configurations. If one conjectures the existence of a latent taxon 
(type, categorical entity) of which three or more quantitative observable 
variables are fallible inhcators, the MAXCOV-HITMAX procedure pro- 
vides a test of the taxonic conjecture and estimates of the latent parameters. 
Relying on the General Covariance Mixture Theorem, the procedure locates 
the hitmax interval (optimal diagnostic cut) on an "input" indicator by 
graphing the covariance of two "output" variables, solves for a latent con- 
stant which is equal to the product of the separations of the two latent 
means, and uses that constant to solve quadratics to obtain the taxon fre- 
quency in each interval, thereby drawing the two latent distributions. No 
"criterion" is required, and the procedure is self-validating by the coherence 
of quantitative values inferred by different epistemic paths. Given trustwor- 
thy (coherent) inferred values, individuals are classifiable via Bayes' Rule. 
The underlying derivations are free of problematic conventional assumptions 
about distribufions, e.g., norm&ty. equal variance, although our ~ o n t e  Car- 
lo runs in this monograph were generated by a Gaussian algorithm. The pro- 
cedure appears satisfactorily robust under departures from the ideahation 
of within-category independence; a modified procedure is avdable (Meehl, 
1995b) for situations of sizeable nuisance covariance. U&e cluster rneth- 
ods, MAXCOV does not deliver a taxon when the latent generating scruc- 
ture is nontaxonic. As with all statistical procedures, it is neutral with re- 
spect to substantive issues concerning the causal origin of taxonicity. 
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APPENDIX A 

Proof of General Covariance Mixture Theorem 
Subscripts (t ,  c) designate taxon and complement classes. Values with- 

out subscripts designate total (mixed) group. P=Proportion in taxon, Q= 
1 - P= Proportion in complement class. The grand covariance (mixed group) 
is 

= ( y z ) - ( y ) ( F )  Definition of couarianre [2] 

The grand mean of cross-products is the weighted sum of taxon and com- 
plement components, 

(yr) =PO, + Qolr), Identiry (algebra) 13 1 
The grand means of y and z are weighted sums of taxon and complement 
components, 

r = PT, + QTc [dl 

Identity (algebra) 

T =  P?, + Qz, [5 I 
Substituting [3] - [4] - [5] into [2] we obtain 

Subtracting and addmg P to the p2 on 7, Tt, and Q to the Q* on %&, 

To indicate that this is general, that it holds for any subset of the data as 
well as for the total group, we write it with lower case proportions and ad- 
just the notation 
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Generalized MAXCOV Allowing Nuisance Covarianceq 

We start with the General Covar~ance Wxture Formula which says 
that, ignoring sampling error, for any mcerval xi 

where 

covyz(xi) = Manifest (yz)-covariance of cases having a score x i ,  hence an empirical function 
of x ;  

C O ~ y z t  = (yz)-covariance within the taxon, assumed to be a constant; 

covyzc = (yz)-covariance within the complement, assumed to be a constant; 

&,rc,$,G = Means of the taxon and complement classes on indicators y and z, respectively; 

Pp 4 = Proportions of the cases within an interval belonging to the taxon and cornple- 
men[ classes, respectively. 

In the original MAXCOV-HITMAX procedure on the idealizing con- 
jecture of no nuisance covariance (cov,, = cavy,, = 0 ) ,  the first two terms on 
the right of Equation [lo] vanish so the left-hand manifest covariance equals 
h e  third term on the right, the "validity-mixture" term. It is called the va- 
lidity-mixture term because its size depends on the two "crude vahdities" 
(mean taxon/complement ddferences, taken as constant absent sampling er- 
ror or nontaxonic moderator effects) and the taxonic mixture p : q. If either 
the y or z inhcator had zero taxonic vahdity or if there were no taxon/com- 
plement mix, i.e., if p=O or q=O, this vahdity-mixture term would also van- 
ish in any such population or sample. Since the validity-mixture term is 
maximized when p=q, plotting the graph of the observable covy,(x,) over 
xi -intervals locates the htmax interval by findmg this graph's maximum. In 
that interval pq= 1/4, and knowing this allows us to solve for the mean dif- 
ference product, and using tha t  value we can write quadratics in pi for all 
other intervals, solve for p, and proceed as explained by Meehl (1973) and in 
the text of this monograph to estimate all of the latent values. 

If sizable nuisance covariance exists, the first two terms on the right do 
not vanish and the hitmax interval cannot be located by finding the empiri- 
cal maximum of covyz(x) unless we know that the nuisance covariances are 
equal, whereby the sum pi covyn + 9, coupe is invariant over x-intervals, but 
even then, we cannot solve for the validity product because we cannot parse 
the right side into its nuisance covariance component and its vhdity-mix- 
ture component. We can, however, proceed as follows: Choosing a cut at  

sufficiently high values of x,  we w d  have passed all or almost all of the com- 
plement cases, so that cases lying above that cut wdl be nearly "pure taxon." 

+These equations are essentially the same as published by Meehl (1995b). 
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Hence, in this region the v&dlty-mixture term vanishes, as does the comple- 
ment nuisance component, and only the component picouY, (where pi -- 1) 
remains, giving us an estimate of the taxon nuisance covariance. Similarly, 
we estimate the complement nuisance covariance from cases lying in the ex- 
treme low region of the x-distribution. Returning to Equation [lo], designat- 
ing the v&dity product as an unknown parameter 8 

8 =  (y , -Fc) (&-G) ,  a constant = K .  [111 

Simpldying subscripts as cou,,,, = cov, , cov,,, = cov, and expanding [lo] in 
terms of pi( = 1 - qi), we have (dropping the subscript i), 

2 cov,,(x) = p(cov, - cov, ) + ( p - p ) 8 + cov, [I21 

Differentiating with respect to x and setting = 0 for a maximum, 

dp Dividing by [ ;t O in region of interest] 

(COV[ - COV,) + 8 - 2p 8 = 0 at max [I41 

8 + (cov, - COVc) 

P = at max 
28 

At this maximum, covy,(x) has an observed numerical value, cov,,,. So at 
that value 

Entering Equation 15 into Equation 16 we obtain 

( e + ( C O ~ ~ -  C O ~ , )  ) ( e + ( ~ 0 ; ~ -  c0uc) 
(c0v1 - COV,) + 

+ (cou, - cov,,,) = o [I71 

which with some straightforward tedious algebra yields 
2 2 0 + ( ~ C O U ,  + Zcov, - 4~0u,,,) e + (COV, - COV,) = o [I81 

a quadratic in 8. Its roots are 
L/2 8 = (2cou,,, - cov, - cov,) f 2[(cov, - cov,,,)(cov, - cov,,,)] . [I91 

T h ~ s  has the form 

(a + b) -+ 2(ab)ln . Do1 
Since 
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and 
a + 6 - 2(ab)1/2 = (all2 - bl12 )' 

the roots [I91 are 
IR 2 

el = [(cov,,, - COUJ + ( C O V ~ , ,  - C O V , ) ~ ~ ~  I [23 I 
112 - 1/2 * e2 = [ ( C O U ~ ~ ~  - ( C O U ~ , ,  - COV,) I . [241 

Root 8, is selected by the physical situation, that for the special case of 
zero nuisance covariance cov, = cov, = 0 it yields the correct value K = 4covmax 
in the hitmax interval, whereas Q2 gives an impermissible K = 0. 

Having found 8, we proceed as in MAXCOV-HITMAX, using Equa- 
tion [3] in each x-interval to get the interval's taxon rate pi ,  the generalized 
quadratic algorithm for the taxon-proportion in an interval xi being 

2 ( K  + cov, - rov,) f 4 ( K  + cow, - rov,) -4K(cow(x,) - cou,) 
P( .Y~)  = 

2 K 
[25 1 

Then N i p i = N c i  the interval's taxon frequency, then C N t i = N , ,  and f i ndy  
base rate P = N , I N .  The latent frequencies having been computed for each 
x-interval, we can obtain directly latent means, standard deviations, skew- 
ness, and kurtosis if desired. For any triad ( x ,  y, z )  of indicator-variables, 
three MAXCOV procedures exist (using either x,  y, or z as "input" indca- 
tor) and the three inferred latent distributions are thus obtained as in MAX- 
COV-HITMAX. 

Error Due to  Intrataxon Correlation 

In the basic equation used to locate the hitmax cut by finding the inter- 
val on x in which cov(yz) is maximum, intrataxon independence is assumed. 
What is the size of error introduced if in fact ry, # 0 but we proceed as if it 
were zero? 

The nonzero covariance between y and z within taxa leads to a slightly 
more complicated expression for cov(yz) in a mixed sample, namely, the two 
intrataxon covariances appear, weighted proportionally to the sample base 
rates. 

Hence hitmax w d  be correctly located even if intrataxon r # 0, pro- 
vided the (yz)-covariances are equal for taxon and complement. But even 
this may be impossible to achieve. How will error in locating the hiunax in- 
terval depend upon the difference between the two intrataxon covariances? 

We begin with the General Covariance Mixture Theorem [Equation 91. 
Then, to maximize, ddferentiating with respect to p (the taxon probabhty in 
an interval), 
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dp 
cou, ( yz) - + cov, ( y z )  

dp 

Thar an extremum is a maximum is shown by the fact that the second deriv- 

throughout the range. We note that, if intrataxon covariances are equal, 
I 

even if # 0 ,  solution is p = q = , . 

The error in locating hitmax is that we w d  find an interval where p r q, 
the deviation from taxon : complement symmetry being proportional to the 
difference between the intrataxon covariances in the numerator on the left. 
The proportionahty constant is half as large as the reciprocal of d,d, (half, 

because the deviation from $ is half the ( p  - q)  dscrepancy). How large is 

such an error? 

NUMERICAL EXAMPLE 
Suppose, to make the arithmetic easy, the variances are equal. Let the 

correlation r,, be .40 among taxon members but only .20 among comple- 
ment members. Assume true vahdities to be at a 1.00 SD separation of the 
means. Then (dividmg by the geometric mean of the variances) we have 

So our maximization of cov(yz) has located the x-interval within which 
the taxon : complement ratio is 60 : 40, instead of the hitmax interval where 
it is 50 : 50. 

NUMERJCAL EXAMPLE OF ERROR IN SOLVING FOR LATENT MEANS 
Suppose we have (mis)located hitmax interval to the extent above, so 

the latent rates in the pseudo-hitmax interval are pt = .60 and p, = .40 instead 
I of pI=pc=- . 
2 

Suppose the true latent means are y, =70 and yc= 60. Let the grand 
base rate be P= .80. (We will assume this latent value to be accurately esti- 
mated, for the present purpose.) 

The (observed) grand mean is 



The mean of the pseudo-hitmax interval is 

(True hitrnax interval would have shown a mean of 65, halfway between the 
two latent values.) 

Then we solve for the latent means using an erroneous equation for the 
pseudo-hitmax interval, thus 

The solution to this approximate system is 

& = 69.33 an error of 1% 

& = 62.67 an error of 4 %  . 

Errors of this s m d  size are quite tolerable in present circumstances. We are 
not, of course, asserting that the latent means are usually this accurate but 
merely that the expected error due to hitmax interval mislocation is negligi- 
ble. 
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APPENDIX B 

While r is not an optimal descriptive statistic in this situation, the ideal 
conditions ( h e a r  regression, homoscedasticity, normaltty of marginals and 
within arrays) being unsatisfied, that does not, of course, prevent its being 
calculated, the latent equations being algebraic identities not dependent on 
those conventional optim&ty conditions. The proportion of variance "ac- 
counted for" remains correct, so long as we treat of the whole range and do 
not plug in the alienation coefficient to predct dispersions within x-intervals. 
Also the y-means cannot be unbiasedly estimated in all the x-intervals. These 
predictive technological tasks are not before us, as they would be in, say, 
personnel selection. Despite Pearson's equation for the normal bivariate sur- 
face, psychologists rarely test for linearity, etc., and in scanning a large ma- 
trix of rs for candidate taxon indicators, the mixture model is what we care 
about. 

Considering - various combinations of base rate P, mean taxonic separa- 
tions d (on both indicators), and nuisance correlations r, [ =  Y, in comple- 
ment class], we can write latent equations: If oS=oy= 1 within classes (so 
that cov, = r, and cov, = r, 1, 

- - 
cov(xy) = Pcov, (xy) + Qcov, (xy) + PQdsdy 

= r ,  + P g d 2  since d, = d; and r, = r, 

var(x) = PO,: + QO; + P Q ~ .  

= 1 + PQZ 
var(y) = 1 + PQ~;  = var(x) 

Then the observed r of a mixed group is 

The following table shows values of manifest correlations generated by latent 
taxon mixtures under various parametric situations (base rate, separation, 
nuisance correlations). 

"This appendix is essentially the same as printed in Meehl and Yonce (1994) and is repro- 
duced here for the convenience of readers. 
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2.50 .61 .65 .69 .73 .77 
Note.-P=Base rate; d=Mean difference in standard units of latent dlsrr~burions; r,, rc = cor- 
relation within taxon group and within complement group. 
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APPENDIX C 

Twenty-five samples have been generated for each parameter configura- 
tion. The first panel contains data from the first sample generated with a giv- 
en configuration, the last panel contains data from the twenty-fifth sample. 
Panels on left-hand pages are from samples in which the latent situation is 
taxonic; on facing pages the latent situation is nontaxonic (factorial), with 
factor loadmgs to produce correlation in the nontaxonic samples comparable 
to that for the taxonic samples. To make a taxonic/nontaxonic comparison, 
any panel on a left page may be compared with any panel on the facing 
page, i.e., there is no intrinsic connection between panels with the same sam- 
ple number on facing pages. Each sample has four indicators, hence there 
are 12 MAXCOV curves in each panel. The ordering of the input/output 
combinations is shown to the left of the first panel on each page. Raw data 
points are plotted, then they are overlaid with smoothed curves. The curves 
are offset within each panel (sample) for display. The configurations used 
for generating the Monte Carlo samples in the order they are presented are: 

Na Taxonic Configuration Nontaxonic Expecced r,,f 
Pb sepC Factor File Comparison 

~ o a d i n g s ~  Codee Factor File 

(continued on next page) 

'Sample size. b ~ a  e rare. CAmounr of separation in SD unjrs, same for all four variables unless di given otherwise. Same for a l l  variables in taxon and in complement groups unless given oth- 
rwise. eA filename coding used by the authors for identification of the Monte Carlo samples. 

'same for all variables unless given otherwise. 
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N3 Taxonic Configuration Nontaxonic Expected r,,f 

Pb sepC Factor File Comparison 
~ o a d i n ~ s ~  Codee Factor File 

~ o a d i n ~ s '  Codee 

600 2.0 Same as For N6-50-20 Same as for N6OO Same as for 
N3-50-20 N3OO N3-50-20 

300 .50 x = 2.00 x = .70 D3-50-vl x = .85 D300 rq = .65 ry, = .52 
y = 1.75 y = .50 y = .76 r ,= .58 r Y U  =.41  
z = 1.50 z = .40 z = .68 r,= .46 r,, = .37 
u = 1.25 v = .20 u = .54 

600 Same as for D6-50-vl Same as for D6OO Same as for 
D3-50-vl D3OO D3-50-VI 

asample size. Ba e rate. 'Amount of separation in SD units, same for all four variables unless 
given otherwisb,. 'kame for all variables in taxon and in mmplement groups unless given oth- 
wise. eA filename cod~ng used by the authors for identification OF the Monte Carlo samples. 

'same for all variables unless given otherwise. 
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Monte Carlo samples: 
Taxonic; N = 100; P= .50 
2 SD separation on each 

variable; 
no  nuisance covariance; 
expected ri, = .50. 
(Configuration code: 

A1 -50-20) 

xsz 
x YV 
XZV 

YXZ 

YXV 

y z v  

zxs 
ZXV 

ZYV 

VXY 

VXZ 

vyz 
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in/outl, out2 

Monte Carlo samples: XYZ 

Nontaxonic; N = 100; x YV 

factor loading .707 on xzv 
each variable; YXZ 

expected r,.= .50. YXV 

yzv 
(Configuration code: C100) zxy 

ZXV 

= yv 
VXY 

VXZ 

vy z 
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Monte Carlo samples: 
Taxonic; N = 200; P= .50 
2 SD separation on each 

variable; 
no nuisance covariance; 
expected Y,, = .50. 
(Configuration code: 

A2-50-20) 

xzv 

Y*Z 

Y X V  

YZV 

Z X Y  

Z X V  
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Monte Carlo samples: x YZ 

Nontaxonic; N = 200; x yv 

factor loading .707 on xzv 
each variable; YX 

expected rg= .50. YXV 
YZV 

(Configuration code: C200) ,,y 

ZXV 

z yv 
VXY 

VXZ 

VYi! 
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in/out l ,  out2 

Monte Carlo samples: XYZ 

Taxonic; N = 300; P= .50 x YV 
2 SD separation on each x z v  

variable; YXZ 

no nuisance covariance; YX " 
,,7,, 

expected Y,;= .50. 
I-. 

ZXV 

(configuration code: z x v  

A3-50-20) YV 
VXY 

VXZ 
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d o u t l ,  out.? 

Monte Carlo samples: XYZ 

Nontaxonic; N = 300; x YV 

factor loading .707 on xzv 
each variable; YXZ 

expected r,.= 30.  YXV 
YZ" (Configuration code: C3OO) zxy 

ZXV 

Z yv 
"XY 

V X Z  

"Yz 
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Monte Carlo samples: 
Taxonic; N = 600; P = .50 
2 SD separation on each 

variable; 
no nuisance covariance; 
expected r,, = 30.  
(Configuration code: 

A6-50-20) 

XYZ 

x YV 
xzv 

YX z 
YX v 
YZV 

z XY 

ZXV 

z YV 
VXY 

VXZ 

w 

1 2 3 4  5 
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in/outl,  ouc2 

Monte Carlo samples: XYZ 

Nontaxonic; N = 600; x YV 

factor loadmg .707 on xzv 
each variable; YXZ 

expected Y, = S O .  YX v 
YZV (Configuration code: C6OO) zxy 

ZXV 

z yv 
VXY 

VXZ 

Vyz 
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in/outl, out2 

Monte Carlo samples: XYZ 

Taxonic; N = 300; P= .25 x YV 

2 SD separation on each X zv 

variable; YXZ 

no nuisance covariance; YX" 
YZV 

expected r,. = .43. ZXY 

(Configuration code: zxv 
A3-25-20] 2 YV 

VXY 

VXZ 

VYZ 
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in/outl,  our2 

Monte Carlo samples: XYZ 

Nontaxonic; N = 300; ~ Y V  

factor loading .66 on xzv 

each variable; YXZ 

expected r,.= .43. YXV 
YZV 

(Configuration code: F300) zxy 

ZXV 

z YV 
VXY 

VXZ 

YYZ 
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in/outl,  out2 

Monte Carlo samples: XYZ 

Taxonic; N = 600; P = .25 XY" 

2 SD separation on each xzv 

variable; YXZ 

no nuisance covariance; 
YXV 

YZV 
expected ri= .43. ZXY 

(Configuration code: zxv 

A6-25-20) ZYV 

VXY 

VXZ 

VYZ 
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in/outl, out2 

Monte Carlo samples: XY z 

Nontaxonic; N = 600; x YV 
factor loading .66 on xzv 

each variable; yxz 

no nuisance covariance; Y ~ V  
YZV expected r,.= .43. 
ZXY 

(Configuration code: F6OO) zxv 

yv 
VxY 

VXZ 

w 
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in/out l ,  ou t2  

Monte Carlo samples: XYZ 

Taxonic; N = 3 0 0 ;  P = . 1 0  XYY 

2 SD separation on each xzv 

variable; YXZ 

no nuisance covariance; YXV 
YZV 

expected r,.= .26. ZXY 

(Configuration code: zxv 
A 3 - 1 0 - 2 0 )  YV 

VXY 

VXZ 

VYZ 



TAXOMETRIC ANALYSES: U. MAXCOV 1163 

in/outl, out2 

Monte Carlo samples: XYZ 

Nontaxonic; N = 300; "Y" 

factor loading .5 1 on xzv 

each variable; YXZ 

expected ri, = .26. YX v 
YZV 

(Configuration code: E3OO) zxy 

zxv 

z Y" 
VXY 

VXZ 

vyz 
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in/outl, out2 

Monte Carlo samples: XYZ 

Taxonic; N = 600; P= .10 x YV 

2 SD separation on each xzv 

variable; YXZ 

no nuisance covariance; YXV 

YZV 
expected ri, = .26. ZXY 

(Configuration code: zxv 
A6-10-20) ZYV 

"XY 

V X Z  

vyz 



TAXOMETRIC ANALYSES: II. MAXCOV 1165 

Monte Carlo samples: x YZ 

Nontaxonic; N = 600; x YV 

factor loading .51 on xzv 
each variable; YX 2 

expected r,.= .26. YXV 
YZV 

(Configuration code: E6OO) zxy 

zxv 

z yv 
V X Y  

VXZ 

VYZ 



P. E. MEEHL & L. J. YONCE 

in/outl, 

Monte Carlo samples: 
Taxonic; N = 300; P= .50 
1.5 SD separation on each 

variable; 
no nuisance covariance; 
expected r,, = .36. 
(Configuration code: 

A3-50-15) 

XYZ 

x YV 
xzv 

sxz 
YXV 

sz v 
ZXY 

ZXV 

=YV 
VXY 

VXZ 

v 
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Monte Carlo samples: XYZ 

Nontaxonic; N = 300; x YV 

factor loading .60 on xzv 
each variable: YXZ 

expected ri, = .36. YXV 
Ym (Configuration code: B3OO) zxy 

ZXV 

=YV 
VXY 

VXZ 
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in/outl, out2 

Monte Carlo samples: 
Taxonic; N = 600; P= .50 
1.5 SD separation on each 

variable; 
no nuisance covariance; 
expected ri, = .36. 
(Configuration code: 

A6-50-15) 

XYZ 

x YV 
xzv 

yx z 
yx v 
YZV 

ZXY 

ZXV 

ZYY 

VXY 

VXZ 

VYZ 
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Monte Carlo samples: XYZ 

Nontaxonic; N = 600; x YV 
factor loading .60 on xzv 

each variable; YXZ 

expected r6= .36. YXV 
Y=v (Configuration code: B6OO) zxy 

ZXV 

z yv 
"XY 

VXZ 

vyz 
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Monte Carlo samples: 
Taxonic; N = 300; P = .50 
2 SD separation on each 
variable; factor loadings (to 
produce nuisance covariance) 
on x =  .70, y = .50, z = .40, 
v = 20; expected Y,, = .68, 
Y,.= .64, Y,,= .57, ry,= .60, 
rYv= .55, r,,= .54. 
(Configuration code: 

N3-50-20) 

XYZ 

x Y" 
x z v  

YXZ 

YXV 

Y =v 
ZXY 

ZXV 

ZYV 

VXY 

VXZ 

VYZ 

1 2 3 4  5 



TAXOMETRIC ANALYSES: 11. MAXCOV 1171 

inloutl, out2 

Monte Carlo samples: XYZ 

Non taxonic; N = 300; x YV 
factor loadings on x = 34,  X Z \ ~  

y = .79, r = .77, v = .69; Y ~ Z  

y x v  
expected Y, = .68, r, = .64, 

YZ" 

r,= .57, ryz= .60, ryu= .55, ZXY 

r,= .54. ZXV 

(Configuration code: N3OO) Zp 
VXY 

VXZ 

VYz 
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Monte Carlo samples: 
Taxonic; N = 600; P = .50 
2 SD separation on each 
variable; factor loadings (to 
produce nuisance covariance) 
on x = .70, y = .50, z = .40, 
v = .20; expected Y, = .68, 
rXz=.64, Y,= .57, yyz=.6O, 
ry,= .55, r,,= .54. 
(Configuration code: 

N6-50-20) 

XYZ 

x yv 
xm 

YXZ 

YX" 

YZ" 

ZXY 

ZXV 

ZYV 

" x Y 
v x z  

VY= 

1 2 3 '4 5 
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in/outl, out2 

Monte Carlo samples: 
Nontaxonic; N = 600; 
factor loadings on x = .84, 
y = .79, z =  .77, v =  .69; 
expected r ,  = .68, r,, = .64, 
r,= .57, yyr = .60, ryv= .55, 
Yzv = .54. 
(Configuration code: N6OO) 

XYZ 
" y v  
x z v  

yx 2 

YXV 
YZ" 
zxy 
z x v  

z y v  
v x y  
VXZ 

VYZ 

1 2 3 4  5 



1174 P. E. MEEHL & L. J. YONCE 

i n / o u t l ,  o u t 2  

Monte Carlo samples: XYZ 

Taxonic; N = 300; P= .50; x YV 

separations on variables XZV 

x = 2.00 SD, y = 1.75 SD, YXZ 

YXV 
z=  1.50 SD, v =  1.25 SD; 

YZV 

factor loadings (to produce zxy 

nuisance covariance) on zxv 

x = .70, y = .50, z = .40, ZYV 

v = 20;  expected Y, = .65, "XY 

VXZ 

r,,= .58, r,,= .46, rY,= .52, 
VYZ 

ryv= .41 ,  rzv= .37. 
(Configuration code: 1 

D3-50-~1) 
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Monte Carlo samples: XYZ 

Nontaxonic; N = 300; XYV 

factor loadings on x = 35, XZV 

yxz 
y = .76, r = .68, v = .54; 

YXV 
expected Y ,  = .65, r,, = .58, yzv 
rm= .46, ryz= .52, vy,= .41, z XY 

r,= .37. ZXV 

(Configuration code: D3OO) Zp 
VXY 

VXZ 

vz 
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in/out l ,  out2 

Monte Carlo samples: ~ Y Z  

Taxonic; N = 600; P = .50; x YV 

separations on variables xzv 
yxz 

x = 2.00 SD, y = 1.75 SD, 
Y xv 

Z =  1.50 SD, v =  1.25 SD; 
YZV 

factor loadings (to produce zxy 
nuisance covariance) on zxv 

x =  .70, y = .50, Z =  .40, ZYV 

V X Y  v = .20; expected rq = .65, vxz 
rXz= .58, rxu= .46, rYz= .52, vy z 
rYv= .41, rZu= .37. 
(Configuration code: 1 

D6-50-vl) 
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i d o u t l ,  our2 

Monte Carlo samples: x YZ 
Nontaxonic; N = 600; x YV 
factor loadings on x =  3 5 ,  xzv 

y = .76, z = .68, v = .54; Y ~ Z  

YXV 
expected rV= .65, r,,= .58, yzv 
r,= .46, ryz= .52, r,,= .41, Z X Y  

rzv = 3 7 .  zxv 

(Configuration code: D6OO) Zyv 
"XY 

VXZ 

Vyz 
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APPENDIX D 

ACCURACY OF K ESTIMATES 

The following table shows mean values for the 25 Monte Carlo samples 
in each configuration. With four variables, each sample yields nvo estimates 
of K for each combination of output variables; i.e., there is an estimate for 
xy when z is the input variable and another when v is the input variable; we 
averaged those two to get the xy for a given sample. Estimated K (K,,,) in 
the table is the mean of chose k values over 25 samples. The Monte Carlo 
configurations are grouped by major parameter being examined: sample size, 
base rate, taxonic separation, nuisance covariance, and a combination of var- 
ious separations and various amounts of nuisance covariance. Within each 
group, samples are in order according to sample size. 

Configuration Output True K Estimated K Proportional Error = 
Pair M SD M SD ( K ~ I  - K I ~  'Kmc 

Algebraic Absolute 
M SD M SD 

Sample Size 
A1-50-20 xy 3.80 

xz 3.93 
xv 3.90 
yz 3.88 
yv 3.85 
zv 3.98 
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Configuration Output True K Escimated K Proportional Error = 
Pair M SD M SD (est K - true K ) /  true K 

Algebraic Absolute 
M SD M SD 

Bdse Rate P= .25 

Base Rate P= .10 

A3-10-20 XY 413  .49 
xz 3.90 .41 
xv 3.82 .46 
yz 4.22 .48 
yv 4.14 .57 
zv 3 .53 
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Configuration Output True K Estimated K Pro~ort ional  Error = 

Separation 1.5 SD 
M-50-15 xy 2.24 .18 3.82 .85 

xz 2.30 .28 3.56 .60 
xv 2.29 .20 3.66 .53 
yz 2.26 .27 3.69 .80 
yv 2.25 .25 3.60 .44 
zv 2.30 .26 3.66 .65 

A6-50-15 xy 2.26 .21 2.96 .38 
xz 2.25 .16 3.17 .40 
xv 2.28 .20 3.07 .46 
yz 2.23 .15 3.00 .47 
yv 2.25 .19 3.12 .36 
zv 2.25 .18 3.20 .56 

Nuisance Covariance 

N3-50-20 xy 3.94 .30 5.07 .73 
xz 3.92 .32 4.43 64 
xv 3.97 .28 3.85 68 
yz 3.96 .29 4.02 57 
yv 4.01 .24 3.83 .54 
zv 3.99 .23 3.86 .54 

N6-50-20 xy 4.11 .28 4.64 .44 
xz 4.08 .28 4.27 .63 
xv 4.07 .25 3.54 .64 
yz 4.10 .26 3.92 .51 
yv 4.08 .25 3.48 .62 
zv 4.05 .23 3.52 .61 

Various Separations and Nuisance Covariance 

D3-50-vl xy 3.53 .35 5.23 .63 
xz 3.04 .32 4.59 .77 
xv 2.57 .27 3.44 .44 
yz 2.57 .28 341  .55 
yv 2.17 .26 2.82 .41 
zv 1.87 .20 2 38 .41 

D6-50-vl xy 3.56 .29 4 90 .52 
xz 3.07 .24 4 1 1  .39 
xv 2.51 .23 2.83 .36 
yz 2.68 .21 3.16 .35 
yv 2.20 .21 2.40 .33 
zv 1.89 .15 1.99 .21 
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APPENDIX E 

BASE RATE ESTIMATES FROM TAXONLC SAMPLES 

Estimates based on abscissa intervals are given for all input/outputl, 
output2 combinations for each taxonic configuration. See Appendix F (p. 
1196) for a summary of pseudoestimates generated by the nontaxonic sarn- 
ples. Ordering of configurations in this appendix: 

No Taxonic Configurarion Expected rif 
pb sepC Factor File Codee 

Loadingsd 

100 .50 2 .O 0 A1-50-20 .50 
200 .50 2.0 0 A2-50-20 .50 
300 .50 2.0 0 A3-50-20 .SO 
600 .50 2.0 0 A6-50-20 .50 
300 .25 2.0 0 A3-25-20 .43 
600 .25 2.0 0 A6-25-20 .43 
300 .10 2.0 0 A3-10-20 .26 
600 .10 2.0 0 A6-10-20 .26 
300 .50 1.5 0 A3-50-15 3 6  
600 .50 1.5 0 A6-50-15 .36 
300 .50 2 .O x = .70 N3-50-20 rq = .68 rYz = .60 

y = .50 rn = .64 r,, = .55 
z = .40 rx, = .57 rzv = .54 
u = .20 

600 same as For N6-50-20 same as for 
N3-50-20 N3-50-20 

300 .50 x = 2.00 x = .70 D3-50-vl rv= .65 r,, = .52 
y = 1 . 7 5  y = . 5 0  rxz = .58 r, = .41 
z = 1 . 5 0  z = . 4 0  rxv = .46 r,, = .37 
u = 1.25 v = .20 

600 same as for D6-50-vl same as for 
D3-50-vl D3-50-vl 

'Sample size. Ba e rate. CAmounr of separation in SD units, same for all Four variables unless 
given othenvis:. 'same for all vanablri in taxon and in complement groups unless given oth- 
nvise. filename codin used by the auchors for identification of the Monte Carlo samples. 

'same for all variables u o i s s  given orhenvise. 
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MAXCOV Estimations of Base Race 
A1-50-20: True P= .50, N =  100, 2 SD Separation on all Indicators 

Sample input/outputl,outpuc2 combination M SD 
x/yz x /yu  x /zu  y /xz  y/xv y/zv z/xy dm z/yv v /xy  U / X Z  U/YZ 

1 .39 .42 .47 .52 .54 .52 .54 .60 .46 .51 .49 .43 .49 .06 

2 .53 .27 .33 .42 .51 .52 .42 .55 .55 .35 .58 .53 .46 .I0 
3 .41 .45 .53 .69 .67 .70 .70 .73 .52 .43 .44 .44 .56 .13 
4 .55 .45 .47 .57 .58 .53 .39 .59 .56 .52 .47 .52 .52 .06 

5 75 .63 .60 .43 .65 .63 .41 .48 .65 .54 .60 .GO .58 .10 
6 82 .45 .51 .46 .44 .42 .64 .42 .47 .38 .38 .41 .48 .13 
7 4 8  .41 .37 .35 .32 .33 .47 .46 .52 .26 .54 .25 .40 .10 
8 .47 .52 .61 .45 .45 .49 .63 .33 .35 .53 .67 .50 .50 .10 
9 .42 .41 .42 .35 .43 .68 .40 .39 .66 .52 3 3  .69 .47 .13 

10 .45 .60 .52 .28 .39 .70 .48 .44 .49 .36 .40 .49 .47 . l l  

11 .36 .45 .46 .46 .46 .45 .46 .55 .50 .62 .57 .34 .47 .08 
12 .39 .48 .42 .39 .64 .42 .47 .44 .44 .46 .43 .47 .45 .07 
13 .46 .43 .55 .40 .49 .32 .41 .54 .80 .43 .39 .45 .47 .12 
14 .40 .34 .67 .67 .63 .63 .40 .43 .39 .49 .49 .35 .49 .13 
15 .34 .52 .60 .26 .48 .63 .29 .65 .76 .52 .34 .68 .51 .17 
16 .47 .59 .44 .70 .63 .55 .60 .47 .47 .57 .54 .54 .55 .08 
17 .42 .38 .41 .32 .30 .55 .49 .47 .49 .47 .47 .47 .44 .07 

18 .54 .51 .66 .26 6 .61 .49 .57 .48 .46 .51 .42 .51 .I1 
19 .44 .39 .54 .48 .49 .46 .61 .71 .27 .54 5 1 .35 .48 .12 
20 .56 .52 .63 .48 .48 .49 .50 .52 .58 .57 58 .59 .54 .05 
21 .54 .55 .46 .32 .29 .33 .45 .52 .56 .65 36 .46 .46 .ll 

22 .72 .53 .52 .61 .73 .58 .40 .42 .46 .47 .46 .56 .54 .ll 

23 .37 .44 .48 .40 .54 .43 .25 .38 .68 .46 .48 .50 .45 .10 
24 .62 .43 .46 .52 .50 .50 .48 .52 .55 .52 .53 .35 .50 .07 
25 .58 .57 .42 .50 .57 .51 .25 .27 .50 .67 .49 .51 .49 .12 

M and SD over 25 samples: .49 .04 
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MAXCOV Estimations of Base Rate 
A3-50-20: True P= .50, N=300, 2 SD Separation on all Indicators 

Sample input/outpucl,output2 combination M SD 
x/yz x/yv x/zv y /xz  y /xv  ~ / z u  z/Xy z/xu z/yv v /xy  U / X Z  u/yz 

1 .48 .47 .47 .57 .47 .47 .30 .56 .59 .45 .44 .58 .49 .08 

M and SD over 25 samoles .49 .02 
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MAXCOV Esrimacions of Base Rate 
A3-25-20: True P=.25, N=300, 2 SD Separation on all Indicators 

Sample inpur/outputl,outputZ combination M SD 
x/yz x/yv x/zv y/xz y/xv y h v  z/xy z/xv z / ~ u  u/ry V / X Z  uIyz 

1 .27 .17 .25 .32 .25 .23 .40 .16 .21 .31 .22 .20 .25 .07 

2 .27 .27 .21 .15 .18 .17 .28 .22 .17 .20 .16 .23 .21 .05 

3 .22 .24 .22 .37 .26 .19 .34 .21 .25 .20 .40 .26 .26 .07 

4 .20 .23 .I8 .24 .23 .22 .22 .19 .29 .24 .I9 .14 .21 .04 

5 .17 .I7 .38 .20 .16 .23 .20 .30 .22 .21 .22 .27 .23 .06 

6 .26 .14 .18 .29 .20 .28 .30 .30 1 .26 .23 .25 .25 .05 

7 .32 .24 .30 .23 .24 .22 .16 .17 .27 .27 .24 .18 .24 .05 

8 .26 .28 .26 .21 .30 .18 .18 .21 .29 .19 .16 .16 .22 .05 
9 .28 .24 .22 .39 .38 .17 .36 .28 .26 .32 .23 .24 .28 .07 

10 .20 .21 .24 .26 .22 .28 .23 .23 .18 .33 .29 .15 .24 .05 

11 .26 .28 .22 .23 .25 .24 .24 .32 .23 .25 .32 .20 .25 .04 

12 .15 .36 .17 .28 .28 .18 .21 .26 .19 .27 .25 .28 .24 .06 

13 .22 .25 .30 .19 .18 .18 .21 .25 .25 .28 .27 .23 .23 .04 

14 .27 .23 .28 .22 .30 .26 .21 .21 5 .I8 .36 .39 .25 .07 

15 .15 .13 .14 .22 .21 .34 .25 .33 .19 .17 .31 .31 .23 .08 

16 .25 .18 .18 .27 .27 .29 .20 .19 .23 .23 .25 .22 .23 .04 

17 .33 .32 .32 .17 .24 .32 .24 .24 .16 .18 .23 .25 .25 .06 

18 .35 .25 .19 .24 1 .30 .31 .21 .22 .26 .20 .26 .26 .05 

19 .23 .15 .15 .21 .20 .20 .22 .25 .23 .31 .23 .23 .22 .04 
20 .19 .29 .23 .24 .18 .12 .31 .29 .29 .20 .19 .20 .23 .06 
21 .24 .21 .18 .17 .20 .21 .32 .24 .18 .26 .23 .31 .23 .05 

22 .25 .35 .20 .29 .12 .21 .20 .15 .23 .32 .30 .21 .24 .07 

23 .27 .18 .20 .29 .33 .18 .31 .29 .20 .25 .23 .22 .25 .05 

24 .24 .50 .25 .29 .34 .25 .19 .26 .19 .I8 .22 .27 .26 .09 

25 .22 .14 .22 .20 .32 .23 .15 .14 .17 .16 .21 .29 .20 .06 

M and SD over 25 sarn~les:  .24 .02 
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MAXCOV Estimations of Base Rate 
A6-25-20: True P=.25, N=600,2  SD Separation on all Indicators 

Sample input/outputl,outpur2 combination 
x/yz x/yv x/zu y/xz y/xu y/zu Z/XY L/XV z/yv v/xy v /xz  v/yz 

1 .25 .25 .24 .24 .25 .24 .27 .27 .18 .23 .24 .20 
2 .27 .20 .30 .24 .24 .21 .26 3 1  .26 .26 .18 .12 
3 .23 .24 .26 .23 .29 .23 .28 .24 .26 3 0  .28 .25 
4 .25 .26 .26 .24 .21 .21 .28 .26 3 1  .24 .25 .26 
5 .14 .26 .27 .19 .20 .18 .20 .19 .23 .18 .20 .19 
6 .24 .28 .22 .22 '.26 .23 .20 .23 .23 .22 .25 .21 
7 .26 .24 .16 .23 .17 .27 .24 .20 .23 .26 .27 .26 
8 .20 .24 .22 .20 .25 23 .23 .25 .24 .20 .24 .19 
9 .24 .29 .27 .27 .28 2s .26 .26 .24 .26 .26 .28 

10 .29 .42 .29 .31 .27 27 .23 .28 .27 .25 .17 .24 
11 .37 .43 .23 .19 .38 .24 .26 .20 .30 .22 .20 .19 
12 .30 .19 .25 .23 .17 .26 .14 .26 .90 .34 .28 .25 
13 .22 .18 .26 .23 .23 .22 .21 .26 .29 .27 .26 .20 
14 .22 .17 .19 .25 .26 .16 .21 .21 .22 3 .30 .30 
15 .27 .24 26 .23 .27 .28 .19 .25 .3O 3 3 .25 
16 .29 .31 28 .17 .17 . l8  .28 .26 .27 .21 .27 .23 
17 .27 .29 27 3 0  .31 .29 .19 .19 .23 .23 .21 .23 
18 .11 .23 .22 .18 .23 .27 .23 .23 3 1  .23 .23 .22 
19 .20 .23 .22 .23 .25 .27 .22 .12 .34 .25 .16 .13 
20 .30 .25 .29 .21 .17 .22 .25 .27 .28 .27 .15 .23 
21 .23 .23 .22 .26 .31 .22 .24 .30 .16 .16 .14 .12 
22 .25 .19 .19 .25 .21 .32 .25 .27 .25 .22 .23 .19 
23 .19 .30 .32 .19 .24 .26 .20 .26 .30 .23 .26 .12 
24 .23 .22 .30 .20 .17 .26 .21 .21 .21 .18 .31 .22 
25 .31 .25 .29 .22 .23 .21 .21 .24 .21 .27 .25 .25 

M and SD over 25 sarn~les: 
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MAXCOV Estimations of Base Rate 
A3-10-20: True P=.10,  N=300,  2 SD Separation on all Indicators 

Sample - 
X/VZ 

input/outpucl,output2 combination M 
x /yv  x/zv y /xz  y /xv  y/zu z / q  z /m, z /yv  v / q  v / x z  v /yz  

M and SD over 25 samples: .13 
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MAXCOV Estimations of Base Rate 
A6-10-20: True P= .lo, N=600, 2 SD Separauon on all Indicators 

- - -  

Sample inpudourpucl .output2 combination M SD 
x/yz x/yv x/zv y/xz y / x u  v/ru z / x y  z / w  z/yv v / ~ y  V/XZ u/yz 

.10 09 .07 .06 .08 .10 .09 

. l l  .10 .10 .10 . l l  .09 .07 

.06 . l l  .17 .09 .15 . l l  .08 

.07 .09 .14 .08 .09 .08 . l l  

.07 .07 .15 .09 .07 .23 .08 

. l l  .08 .12 .06 .09 .15 .12 

.20 .08 .08 09 .09 . l l  .12 

.10 .14 .08 08 .10 .11 .07 

.I0 .09 .10 09 .10 1 .08 

. l l  10 .18 .19 .18 .10 .I0 

.10 08 .12 .12 .I1 .10 . l l  

.09 08 .10 .12 .12 .10 .09 

.07 .08 .12 .08 .09 . l l  .10 

.14 .06 .08 .13 .10 .lo .ll 

.12 .10 .09 .10 .09 .12 .09 

.08 . l l  .12 .08 .11 .07 .10 

. l l  .10 .07 .10 . l l  .09 .10 

.09 .12 .07 .OP 08 .10 .13 

.07 .07 .16 .09 13 .08 .10 

. l l  .13 .10 .09 08 .14 .15 

. l l  .10 .09 .07 .10 .08 .09 

.15 .14 .08 .08 .08 .09 .08 

.07 .12 .12 .12 .I1 .10 .09 

.16 .09 .09 .09 .10 .08 .15 

.08 .07 .09 .06 .09 .06 .10 

M and SD over 25 samples: 
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MAXCOV Estimations of Base Rate 
A3-50.15: True P= .50, N=3OO, 1.5 SD Separation on all Indicators 

Sample inpudoutputl,output2 combination M SD 
x/yz x /yu  X/ZU y / x z  y /xu  y/zu z/xy Z / X V  z/yu u /xy  V / X Z  u/yz 

.63 .28 .59 .22 .42 .44 .17 

.48 .42 .60 .63 .60 .54 . l l  

.58 .68 .67 .32 .32 5 1  .15 

.25 .30 .78 .73 .20 .53 .24 

.61 .73 .33 .59 .53 .51 . l l  

.41 .44 .76 .19 .61 .49 .14 

.36 .58 .64 .54 .63 .54 .12 

.33 .53 .18 .46 .19 .44 .18 

.48 .49 .67 .56 .74 .57 .16 

.63 .54 .54 .66 .57 .60 .08 

.49 .50 .52 .44 .18 .50 .14 

.60 .47 .48 .54 .71 .53 .10 

.53 .61 .47 .63 .73 .54 .13 

.49 .62 .29 .81 .64 .54 .14 

.60 .58 .74 .44 .80 .49 .19 

.59 .65 .68 .59 .62 .57 .07 

.40 .65 .66 .56 .67 .51 .12 
'34 .74 .18 .54 .57 .57 .19 
.75 .45 .46 .48 .46 .53 .14 
.45 .45 .46 .15 .59 .40 .15 
.39 .55 .45 .46 .44 .50 .20 
.85 .82 .53 .51 .66 .64 .13 
.57 .54 .30 .33 .42 .38 .15 
.37 .57 .69 .49 .53 .54 .14 
.47 .15 .31 3 .40 .38 .17 

M and SD over 25 samples: .51 .06 
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MAXCOV Estimations of Base Rate 
A6-50-15: True P= .50, N=600, 1.5 SD Separation on all Indicators 

Sample input/outputl,outpur2 combination M SD 
x/yz x/yv x/zu y/xz y/xv y/zv z/xy z / m  d y u  v/xy V / X Z  v/yz 

.64 .74 .39 .57 .49 .17 .50 .46 

.65 .43 .61 .56 .53 .71 .65 .57 

.45 .25 .61 .46 .61 .41 .39 .43 

.63 .41 .45 .53 .62 .48 .55 .62 

.68 .38 .33 .87 .16 .58 .46 .55 

.43 . l l  .51 .14 .51 .47 .55 .53 

.49 .54 .67 .60 .15 .42 .55 .18 
3 .52 .46 .55 .46 .43 .50 .49 
.58 .35 .55 .67 .55 .34 .38 .38 
.45 .85 .35 .51 .35 .47 .47 .77 
.3 1 .49 .42 .84 .46 .56 .62 .79 
.56 .41 .60 .78 .42 .49 .59 .52 
.38 .70 3 5  .62 .18 .45 .61 .16 
.48 .53 .58 .70 .46 .50 .50 .50 
.42 .48 .51 .62 .44 .48 .52 .23 
.42 .75 .49 .27 .54 .33 .28 .43 
.70 .17 .60 .42 .65 .55 .50 .50 
.67 .58 .63 .5 1 .74 .54 .32 .68 
.59 .34 .38 .77 .19 .67 .45 .40 
.66 .40 .49 .68 .32 .57 .54 .47 
.53 .50 .53 .46 .77 .61 .15 .19 
.53 .50 .50 .73 .72 .54 .55 .52 
5 .42 .44 .45 .46 .54 .46 .50 
.50 .27 .35 .53 .70 .59 .45 .56 
.43 .51 .81 .60 .33 .42 .46 .58 

M and SD over 25 samples: 
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MAXCOV Estimations of Base Rate 
N3-50-20: True P=.50, N=3OO, 2 SD Separation on all Indicators 

Nuisance Covariance in Taxon and Complement Groups 

Sample input/outpurl,output2 combination M SD 
x/yz x/yv x/zu y/xz y / m  y/zv z/xy z/xv z/yv v /xy  v /xz  v /yz  

1 .56 .46 .65 .61 .40 .39 .24 .35 .51 .51 .51 .53 .48 .12 
2 .26 .17 .52 .56 .57 .55 .53 .24 .53 .54 .56 .54 .46 .15 
3 .74 .63 .72 .53 .54 .40 .60 .62 .58 .59 .57 .53 .59 .09 
4 .41 .43 .64 .44 .44 .55 .43 .43 .42 .45 .52 .46 .47 .07 
5 .47 .41 .42 .40 .52 .45 .34 .50 .38 .41 .41 .47 .43 .05 
6 .45 .52 .54 .42 .37 .37 .56 .51 .47 .79 .56 .59 .51 . l l  
7 .45 .58 .76 .66 .49 .71 .53 .53 .49 .51 .50 .47 .56 .10 
8 .19 .65 .49 .51 .38 .57 .45 .44 3 9  .45 .51 .50 .46 . l l  
9 .42 .51 .46 .40 .59 .48 .56 .56 .51 .49 .45 .59 .50 .06 

10 .40 .59 .41 .38 .73 .52 .49 .42 .52 .60 .58 .58 .52 .10 
11 .24 .28 .57 .53 .56 .48 .41 .41 .42 .39 .50 .23 .42 .12 
12 .51 .34 .54 .51 .48 .45 .44 .55 .68 .46 .50 .48 .49 .08 
13 .58 .57 .48 .39 3 6  .40 .52 .47 .46 .39 .41 .40 .45 .07 
14 .46 .49 .58 .55 .60 .56 .41 .55 .58 .48 .47 .45 .52 .06 
15 .57 .53 .65 .54 .55 .54 .49 .52 .54 .49 .60 .48 .54 .05 
16 .48 .49 .35 .70 .56 .31 .44 .42 .46 .60 .36 .44 .47 . l l  
17 .52 .50 .49 .43 .48 .34 .48 .52 .53 .55 .56 .54 .49 .06 
18 .74 .52 .67 .36 .41 .35 .20 .21 .21 .52 .63 .56 .45 .19 
19 .58 .47 .37 .42 .52 .52 .49 .40 .47 .53 .55 .61 .49 .07 
20 .58 .54 .60 .61 .79 .57 .42 .49 .44 .54 .57 .37 .54 . l l  
21 .55 .34 .54 .61 3 3  .55 .44 .42 .41 .36 .40 .39 .44 .10 
22 .71 .50 .17 .68 .51 .6A 3 8  .58 .39 .55 .77 .74 .55 18 
23 .63 .46 .50 .54 .48 .70 .49 .53 .46 .42 .44 .43 .51 08 
24 .40 .38 .41 .42 .41 .41 .67 .72 .46 .46 .47 .44 .47 1 1 

25 .49 .41 .57 .51 .41 .55 .57 .55 .59 .50 .46 .52 .51 .06 

M and SD over 25 samoles: .49 .04 
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MAXCOV Estimations of Base Kate 
N6-50-20: True P= .50, N=600, 2 SD Separation on all Indicators 

Nuisance Covariance In Taxon and Complement Groups 

Sample inpudoucput I ,output2 combination M SD 
x/yz x/yv x/zv y/xz y / m  y/zv 2.4 r/xv z/yu v / q  v/xz u/yz 

1 .40 .45 .40 .56 .51 .53 .47 .61 .62 .53 .51 .50 .51 .07 
2 .43 .44 .50 .51 .47 .47 .64 .49 .50 .48 .48 .56 .50 .06 
3 .49 .47 .48 .41 .48 .41 .47 .57 .39 .52 .50 .52 .48 .05 
4 .42 .48 .50 .45 .42 .45 .49 .46 .52 .49 .49 .46 .47 .03 
5 .40 .41 .42 .39 .22 .40 .46 .43 .40 .22 .46 .I7 .37 . I0  
6 .58 .50 .52 .21 .47 .48 .77 .52 .55 .41 .50 .50 .50 .13 
7 .54 .58 .55 .45 .63 .54 .49 .53 .48 .48 .46 .43 .51 .06 
8 .81 .21 .53 .55 .53 .49 .22 .47 .51 .63 .59 .60 .51 .I6 
9 .58 .54 .58 .56 .53 .46 .55 .55 .54 .49 .49 .48 .53 .04 

10 .57 .60 .53 .46 .47 .48 .52 .50 .60 .53 .53 .53 .53 .05 
11 .48 .55 .16 .44 .41 .41 .55 .50 .48 .59 .45 .52 .46 .I1 
12 .48 .53 .45 .49 .55 .59 .47 .47 .51 .51 .42 .52 .50 .05 
13 .64 .59 .48 .41 .49 .42 .53 .47 .47 .48 .47 .52 .50 .07 
14 .54 .43 .48 .47 .49 .40 .53 .52 .50 .44 .53 .45 .48 .04 
15 .48 .44 .49 .55 .51 .52 .49 .40 .40 .53 .53 .53 .49 .05 
16 .56 .52 .53 .58 .59 60 .53 .54 .50 .63 .63 .49 .56 .05 
17 .52 .52 .53 .57 .43 53 .45 .43 .48 .51 .50 .52 .50 .05 
18 .69 .55 .55 .60 .56 58 .48 .48 .46 .56 .57 .54 .55 .06 
19 .45 .48 .46 .45 .43 .46 .41 .44 .69 .23 .26 .23 .42 .13 
20 .51 .51 .54 .47 .43 .52 .57 .47 .58 .53 .49 .58 .52 .05 
21 .48 .54 .57 .22 .49 .52 .43 .55 .48 .49 .47 .46 .47 .09 
22 .54 .48 .49 .50 .51 .52 .54 .52 .52 .53 .53 .56 .52 .02 

23 .51 .48 .50 .48 .50 .52 .47 .46 .44 .54 .50 .44 .49 .03 
24 .48 .49 .47 .46 .46 .44 .46 .52 .51 .48 .51 .46 .48 .02 
25 .20 .52 .50 .51 .49 .50 .46 .53 .43 .56 .50 .49 .47 .09 

rM and SD over 25 samoles: .49 .02 
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MAXCOV Estimations of Base Rate 
D3-50-vl: True P= .50, N=300, separation on x=2.00 SD, y=1.75 SD, z =  1.50 SD, v=  1.25 SD 

Sample input/outputl,output2 combination M SD 
x/yz x/yv x/zu y/xz y/xv y/zv z/xy z/m z/yv v/xy v/xz v/yz 

1 .83 .47 .78 .74 .49 .80 .77 .78 .52 .43 .58 .35 .63 .I7 
2 .47 .67 .45 .64 .51 .51 .33 .61 .38 .62 .66 .66 .54 .12 
3 .14 .I6 .51 .59 .59 .59 .57 .65 .59 .16 .23 .43 .43 .20 
4 ,235 .31 .39 .55 .55 .51 .44 .78 .74 .71 .72 .75 .61 .I7 
5 .56 .45 .81 .47 .49 .47 .57 .53 .48 .48 .71 .55 .55 . l l  
6 86 .57 .77 .19 .62 .68 .46 .80 .71 .50 .18 .72 .59 .22 
7 58 .63 .48 .84 .49 .36 .39 .42 .47 .42 .41 .60 .53 .17 
8 68 .44 .41 .52 .61 .58 .44 .19 .60 .26 .24 .26 .44 .I7 
9 .45 .52 .54 .45 .50 .41 .42 .39 .44 .52 .49 .47 .47 .05 

10 .22 .57 .57 .60 .76 .69 .60 .61 .61 .46 .46 .41 .55 .14 
11 .64 .12 .47 .55 .62 .46 .47 .44 .42 .29 .45 .28 .43 .15 
I2 .16 .58 .39 .28 .47 .42 .25 .23 .49 .61 .53 .59 .42 . I6  
13 .46 .50 .73 .70 .47 .74 .47 .44 .22 .47 .46 .45 .51 .15 
14 .51 .47 .57 .58 .54 .47 .43 .54 .55 .62 .62 .54 .54 .06 
15 .59 .46 .& .34 .60 .55 .33 .49 .20 .38 .55 .67 .49 .14 
16 .43 .42 .38 .43 .29 .47 .51 .34 .64 .26 .47 .42 .42 .10 
17 .52 .58 .43 .57 .67 .57 .25 .85 .80 .25 .23 .20 .49 .22 
18 .44 .53 .82 .43 .40 .40 .40 .46 .15 .48 .68 .69 .49 .17 

19 .84 .50 .57 .56 .50 .49 .72 .77 .72 .64 .57 .42 .61 .13 
20 .26 .81 .I9 .43 .23 .69 3 4  .34 .28 .41 .40 .28 .39 .19 
21 .48 .76 .72 .55 .56 .20 .52 .49 .72 .50 .42 .13 .50 .19 
22 .12 .48 .44 .18 .42 .73 .42 .61 .81 .28 .32 .25 .42 .21 
23 .52 .51 .52 .60 .24 .23 .65 .55 ,231 .47 .64 .48 .52 .I6 

24 .44 .54 .55 .49 .50 .54 .54 .28 .45 .44 .39 .41 .46 .08 

25 .59 .81 .53 .48 .44 .42 .58 .60 .59 .59 .70 .59 .58 . l l  

M and SD over 25 samples: .50 .07 
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MAXCOV Estimadons of Base Rare 
D6-50-vl: True P= .50, N=600, separation on x=2.00 SD, y = 1.75 SD, z= 1.50 SD, u= 1.25 SD 

Sample - 
x/vz 

input/outpurl,output2 combination 
x/yv x/zu y/xz y/xv y/zv z/xy z/xv dyu u/xy v/xz v/yz 

.78 .41 .37 

.61 .18 .55 

.57 .47 .51 

.52 .56 .41 

.20 .25 .74 

.60 .59 .48 

.42 .42 .64 

.65 .18 .34 

.47 .44 .24 

.54 .38 .54 

.60 .52 .47 

.51 .72 .50 

.57 .36 .51 

.52 .70 .49 

.59 .36 .55 

.69 .36 .56 

.40 .59 .47 

.41 .77 .59 

.34 .30 ,154 

.36 .35 .48 

.49 .48 .46 

.52 .55 3 8  

.49 .5 1 .57 

.47 .46 .25 

.44 .45 .44 

M and SD over 
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APPENDIX F 

' L B ~ ~ ~  RATE" ESTIMATES FROM NONTAXONIC SAMPLES 

Mean "base rate" estimates (using abscissa intervals) are calculated 
using 25 samples per nontaxonic configuration. 

Sample Configuration "Base Rate" SD 
File Code" r;; N 

correlations same 
as for N3OO 

correlations same 
as for D3OO 

letter is the authors' code for the configuration of Eactor loadings used to produce the 
desired r;, ; the number part indicates sample size. 
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APPENDIX G 

Each estimate is the average of the three estimates generated per sample 
when four indicators are used. For example, the taxon mean for x is esti- 
mated when y and z ,  then y and v ,  and then z and v are used as the output 
variables; these three values are averaged to get the means given in this ap- 
pendix. Results for the Monte Carlo configurations are presented in the fol- 
lowing order: 

N a Taxonic Configuration Expected r,,f 
P b sepc Factor File Codee 

Loadingsd 

100 .50 2.0 0 Al-50-20 .50 
200 .50 2.0 0 A2-50-20 .50 
300 .50 2.0 0 A3-50-20 .50 
600 .50 2.0 0 A6-50-20 .50 
300 .25 2.0 0 A3-25-20 .43 
600 .25 2.0 0 A6-25-20 .43 
300 .10 2.0 0 A3-10-20 .26 
600 .I0 2.0 0 A6-10-20 .26 
300 .50 1.5 0 A3-50-15 .36 
600 .50 1.5 0 A6-50-15 3 6  
300 .50 2.0 x = .70 N3-50-20 rv = .68 r,, = .60 

y = .50 rn = .64 r,, = .55 
z = .40 r.v:ru = .57 r,,, = .54 
0 = .20 

600 .50 2.0 same as for N6-50-20 same as for 
N3-50-20 N3-50-20 

300 .50 x = 2.00 x = .70 D3-50-vl rAy = .65 r,, = .52 
y = 1.75 y = .50 r, = .58 r,, = . 41  
z = 1 . 5 0  z = . 4 0  r, = .46 r, = .37 
v = 1.25 v = .20 

600 .50 same as for Dl-50-vl same as for 
D3-50-vl D3-50-vl 

'Sample size. b ~ a s e  rate. 'Amount o i  separation in SD units, same €or all four variables unless 
given othenvise. d ~ a m e  for all variables in taxon and in complement groups unless given oth- 
envise. 'A filename codin used by the authors for ident~fication of h e  Monte Carlo samples. 
'Same for all variables un i ss  given orhenvise. 



MAXCOV Estimations of Means 
Al-50-20: True P=.50, N =  100, 2 SD.Separation on all Indicators 

Sample Pooled Estimates Error in Pooled Esrimates 
Complement Taxon Complemenr Taxon 

X Y z U X Y z tl X Y z U X Y z U 

1 .I3 .I8 -.05 .23 1.90 1.88 1.90 2.01 .28 .I5 .I6 .15 - 0  -.I7 -30 -.04 
2 .35 .I6 -.21 .21 1.54 1.80 1.97 1.76 .22 . I 1  .I3 .21 .03 -.08 -.I 1 -.05 
3 .21 .I9 .I3 .44 1.87 1.40 1.69 2.02 .25 .02 -.09 .20 -.07 -.39 -.40 .03 
4 .I2 .I8 .31 .04 1.98 1.79 1.74 1.71 .I6 .I7 .I3 .I5 -.08 -.29 -.I7 -.20 
5 -.01 -.05 .I 1 -.03 1.45 1.73 1.85 1.75 -.06 -.I3 .I3 -.01 -.40 -.I6 -.I2 -.20 
6 .23 .I1 .28 .I8 1.52 9 3  1.87 2.37 .09 .21 .I7 .35 - 3  -.I5 -.I1 .09 
7 .35 .52 .06 .59 1.93 2.19 2.00 1.93 .24 .37 .I4 .51 .04 .30 -.TI -.I7 
8 -.I7 .34 .43 .28 1.72 2.02 1.90 1.83 -.01 .I6 .30 .I2 -.I6 -.I8 -.07 -.27 
9 .24 .30 .I3 .23 2.10 1.78 1.91 1.82 .30 .33 .I4 .28 .05 -.I4 -.21 -.21 
10 .24 .40 .21 .50 1.72 1.98 1.81 2.05 .22 .25 .24 .22 -.25 -.05 -.I6 .05 
11 .38 .35 .06 .20 2.10 2.04 1.77 1.86 .30 .06 .I1 .27 -.06 .04 -.I2 -.29 
12 .24 .42 .I2 .37 2.32 1.81 1.89 2.09 .23 .31 .I 1 .27 . I2 -.25 .02 -.07 
13 .I4 .42 -.06 .42 2.11 1.97 1.43 1.91 .20 .46 .I4 .26 -.I3 -.23 -.42 -.02 
14 .I9 -.31 .38 .25 1.98 1.52 1.97 1.95 .31 -.26 .29 .22 -.I4 -.34 -.I0 -.04 
15 .16 .05 .I2 -.02 1.76 3 1.56 1.73 .21 .I4 .07 .I4 -.I6 -.I9 -.28 -.24 
16 .I2 .I4 -.01 -.18 1.86 1.52 1.82 1.80 .08 .05 .08 .I2 -.06 -.48 -.I4 -.32 
17 .25 .53 .I3 .29 2.09 2.13 1.94 1.83 .30 .32 .19 .I3 .O1 .02 -.I 1 .01 
18 .33 -.06 .07 .28 1.85 1.84 1.71 1.95 .02 .I5 .I4 .I4 -.I2 -.I6 -.I9 -.18 
19 .51 .I7 .I3 .24 2.07 1.94 1.69 1.99 .26 .I7 .06 .I3 -.01 -.07 -.I2 -.05 
20 .08 .03 .01 .09 1.67 1.73 1.73 1.71 -.08 .I6 .04 -.07 -.20 -.20 -.I5 -.20 
21 .OO .57 .06 .23 1.83 1.83 1.89 1.65 .I0 .46 .14 .I6 -.21 .09 -.24 -.I4 
22 .38 -.02 .I9 .09 2.00 1.53 1.98 1.90 -.02 -.05 .26 .I8 -.25 -.41 -.02 -.I2 
23 17 .28 .33 .42 2 .  1.79 2.08 2.09 .29 .I7 .37 .21 -.01 -.06 - 0  -.07 
24 oh -.06 .I8 .23 1.72 1.90 1.86 2.14 .06 .09 .05 .21 -.I3 -.05 -.I0 -.06 
25 13 -.08 .33 .09 1.83 1.94 1.80 1.82 .I5 .06 .47 .I2 -.20 -.23 -.06 -.23 
M .I9 .I9 .I4 .23 1.88 1.82 1.83 1.91 .16 .I6 .I6 .I9 -.I1 -.I5 -.I5 -.I2 
SD .I4 .22 .I5 .I7 .21 .21 .I4 .I6 .I2 .I6 .I 1  .II .13 .I7 .I0 .I1 

mean absolute error .I8 .I9 .I7 .I9 3 .I9 .I5 .I3 
SD .I0 .I2 -10 .I0 .I1 .I2 .I0 .09 



MAXCOV Estimations of Means 
A2-50-20: True P= .50, N=200, 2 SD Separation on al l  Indicators 

Sample Pooled Estimates Error in Pooled Estimates 
Complement Taxon Complement Taxon 

X v z U X v z U X V z u X V z u 

1.95 2.08 1.96 1.90 -.02 
2.05 1.84 1.78 1.80 .36 
2.22 1.78 1.94 1.65 .37 
1.91 2.10 1.91 1.94 .06 
2.31 1.95 1.83 1.76 .30 
2.11 2.01 1.81 1.97 .2 1 
1.94 1.90 1.90 1.90 .06 
1.77 1.92 1.93 1.69 .03 
1.90 2.01 2.01 2.12 .I0 
1.91 2.22 1.91 1.75 -.06 
2.01 2.12 1.76 2.10 .I I 
2.00 2.04 2.1 1 2.13 .07 
1.84 1.85 2.02 2.14 .09 
2.05 1.81 1.94 1.86 .07 
1.75 1.74 2.00 2.08 .05 
2.05 1.89 1.88 2.01 .I 1 
1.88 1.87 1.83 1.60 -.06 
2.03 1.86 1.72 1.90 .07 
1.94 1.98 1.87 1.81 .03 
1.90 1.99 1.91 1.84 . I2 
1.91 1.89 1.84 2.16 .OO 
2.02 1.94 1.98 2.16 .I4 
1.83 1.72 2.00 1.93 .I6 
2.25 2.33 1.96 1.73 .24 
2.14 1.85 1.75 2.01 .03 
1.99 1.95 1.90 1.92 .I1 
.14 .I4 .09 .I7 .I 1  

mean nbsolute error .I2 
SD .I0 



1200 P. E. MEEHL & L. J. YONCE 



MAXCOV Estimations of Means 
A6-50-20: True P= .50, N =600, 2 SD Separation on all Indicators 

Sample Pooled Estimates Error in Pooled Estimates 
Complement Taxon Complement Taxon 

X Y z U X Y 2 u x Y z U X Y 2 U 

2.09 1.94 1.94 .I3 
2.11 1.94 1.94 .I3 
2.09 1.84 1.96 -.03 
2.00 1.81 1.97 .25 
1.98 1.92 2.09 .05 
I .99 2.06 2.03 .OO 
1 96 1.95 1.97 .OO 
I 88 2.03 2.14 .07 
1 89 1.92 2.05 -.03 
1.95 1.82 1.93 .OO 
1.91 1.91 2.01 -.06 
2.00 1.87 1.88 .I2 
2.04 1.94 2.06 .4 1 
2.18 2.01 2.01 -.05 
1.77 2.14 1.99 .40 
1.90 2.16 2.08 .06 
2.03 2.04 2.04 -.05 
2.02 1.83 2.04 .08 
1.98 1.96 2.04 .09 
1.98 1.95 1.97 .I0 
1.95 1.99 2.17 -.I I 
1.88 2.00 1.94 -.OO 
1.98 2.03 2.00 .04 
2.05 1.96 2.01 .03 
1.87 1.89 2.13 .I4 
1.98 1.96 2.02 .07 
.09 .09 .07 .I2 

mean nbsolute error .I0 
SD .I1 



MAXCOV Estimations o f  M e a n s  
A3-25-20: T r u e  P= .25, N=.3OO, 2 SD Separa t ion  o n  all Ind ica tors  

Sample Pooled Estimates Error in Pooled Esimares 
Complemen~ Taxon Complement Taxon 

X Y z V 

1.98 1.89 1.90 1.87 
1.74 2.02 2.05 1.99 
2.18 1.96 1.89 1.58 
2.25 2.15 1.96 2.00 
1.97 1.97 2.05 1.97 
2.14 1.88 1.77 1.82 
2.02 2.02 2.08 1.85 
1.79 1.54 1.98 2.02 
1.81 1.84 1.82 1.94 
1.84 1.89 1.85 1.81 
1.98 1.94 1.90 1.90 
1.68 1.82 1.87 1.94 
1.85 2.11 1.87 1.91 
2.00 1.74 2.20 1.62 
2.26 1.92 1.83 1.78 
1.71 1.72 2.23 2.04 
1.76 2.03 1.78 1 94 
1.76 1.86 1.96 1 80 
1.94 2.05 1.91 I 90 
1.87 2.09 1.82 1.92 
2.01 2 .  1.97 1.71 
1.66 1.86 2.10 1.70 
1.99 1.87 1.76 2.07 
1.70 1.60 1.81 1.95 
2.21 1.97 1.92 2.06 
1.92 1.91 9 1.88 
.I8 .I5 .I3 .I3 

mean absolute error 
SD 



MAXCOV Estimations of  Means 
A6-25-20: True P= .25, N = 600, 2 SD Separation o n  all lndicators 

Sample Pooled Estimates Error in Pooled Estimates 
Complement Taxon Complement Taxon 

2.01 1.84 1.83 -.01 
2.08 1.79 2.02 .04 
2.12 1.90 1.89 .02 
2.17 2.00 2.20 .I0 
1.96 2.03 1.98 .01 
2.03 1.96 2.05 .07 
1.87 1.92 1.71 .07 
1.90 2.02 2.01 -.03 
1 .88 1.90 1.94 -.I 1 
1.82 1.91 2.09 -.09 
1.91 1.58 1.87 .06 
2.07 1.94 1.92 .06 
1.79 2.09 1.91 .09 
1.95 1.90 1.98 .OO 
1.93 1.86 1.93 -.06 
1.92 2.05 2.14 -.M 
2.01 1.95 1.74 I5 
1.74 1.77 1.65 .M 
2.05 1.75 1.84 .OO 
1.84 1.88 1.84 .OO 
2.20 1.91 1.94 .07 
1.88 1.91 1.98 -.02 
2.19 1.85 1.83 .02 
2.08 1.92 1.86 -.02 
1.98 1.90 1.93 .02 
.I2 .I0 .I3 .06 

mean absolute error .05 
SD .J4 



MAXCOV Estimations of  Means 
A>-10-20: Truc P= .lo, N=300, 2 SD Separation on all Indicators 

Samplc Pooled Estimates Error in Poolcd Estimares 
Complement Taxon Complement Taxon 

X V z U x V z V X v z u X v z U 

1 -.I2 .I2 -.01 -.09 1.40 1.94 1.73 1.69 
2 .01 .08 .I0 -.02 1.68 1.84 1.29 1.46 
3 .I2 -.OO -.01 -.04 1.54 1.89 1.52 1.64 
4 -.04 -.07 .04 -.07 1.62 1.63 1.74 1.57 
5 -.06 -.02 -.OO -. 13 1.43 1.72 1.65 1.40 
6 -.09 .07 -.I8 .08 1.62 1.5 I 1.43 1.86 
7 .06 - 0  .03 .01 1.67 1.54 1.29 1.27 
8 -.08 .OO -.I0 .02 1.76 1.45 1.40 1.68 
9 .06 .01 -03 -.03 1.79 2.19 1.60 1.54 
10 -.32 -.08 -.04 -.05 .90 1.71 4 1.60 
I 1  .I1 .05 .04 .01 1.50 1.55 1.80 1.91 
12 -.08 .06 -.02 -.08 1.51 1.80 1.79 1.92 
13 -.01 -.I1 -.01 -.02 1.77 1.99 1.58 1.74 
14 -.04 .I7 .09 -.Ol 1.95 1.58 1.63 1.64 
15 .09 .06 .05 .01 1.45 9 1.78 1.44 
16 -.01 -.OO .04 .I2 1.56 1.78 1.40 1.79 
17 .I6 -.02 .03 .09 1.48 1.51 1.80 1.64 
18 -.OO -.08 -.01 .08 1.35 1.47 1.45 1.71 
19 -.09 -.05 .09 -.03 1.18 1.57 1.23 1.51 
20 .I0 .05 -.I5 .02 1.92 7 1.32 1.17 
21 .01 -.02 -.07 -.I0 1.86 2.03 1.45 1.55 
22 .02 06 .04 .I4 1.28 1.86 1.82 2.08 
23 - 0  06 -.06 -.07 1.77 1.70 1.69 1.50 
24 -.01 02 .21 -.09 1.47 1.42 1.07 1.37 
25 .04 -.02 .08 -.04 4 3  1.93 1.66 1.75 
M -.01 .01 .01 -.01 1.55 1.73 1.54 1.62 
SD .I 0 .06 .08 .07 .23 .20 .20 .21 

mean absolute error 
SD 





MAXCOV Estimations of Means 
A3-50-15: True  P =  .50, N=300, 1.5 SD Separation o n  all Indicators 

Sample Pooled Estimates Error in Pooled Esrirnares 
Complement Taxon Complement Taxon 

1.22 1.74 1.61 1.40 
1.34 1.53 9 1.67 
1.29 1.30 1.41 1.09 
1.66 1.60 3 1.74 
1.53 1.69 1.66 1.28 
1.75 1.29 1.63 1.48 
1.43 1.70 1.36 1.69 
1.55 1.39 1.47 1.17 
1 .I2 1.44 1.42 1.56 
1.63 1.34 1.55 1.68 
1.49 1.58 1.51 1.39 
1.59 1.39 1.36 1.30 
1.57 1.59 1.51 1.38 
1.49 1.57 1.63 1.20 
1.22 1.50 1.48 1.45 
1.53 1.56 1.48 1.32 
1.52 1.14 1.47 1.40 
1.44 1.58 1.49 1.67 
1.55 1.58 1.60 1.42 
1.15 1.46 1.46 1.67 
1.33 1.51 .93 1.39 
1.80 1.58 4 1.57 
1.60 1.37 1.43 1.44 
1.85 1.36 1.67 1.71 
1.49 1.48 1.48 1.46 
.I9 .I4 5 .I8 

mean absolute error 
SD 



MAXCOV Estimations of Means 
A6-50-15: True P= .50, N =600, 1.5 SD Separation on aU Indicators 

Sample Pooled Estimates Error in Pooled Estimates 
Complement Taxon Complement Taxon 

X Y Z U X v z U X Y z U X Y Z U 

1.49 3 1.57 1.53 
1.42 1.50 1.46 1.34 
1.47 1.66 1.43 I .74 
1.40 1.35 1.46 1.49 
1.39 1.51 1.22 1.56 
1.32 1.54 1.43 1.39 
1.54 1.55 4 1.33 
1.39 1.63 1.50 1.46 
1.42 1.51 1.42 1.73 
1.66 1.14 1.56 1.42 
1.53 1.56 3 1.29 
1.33 1.78 1.37 1.40 
1.58 1.50 1.58 1.35 
1.60 1.61 1.26 1.51 
1.45 1.59 1.50 1.53 
1.60 1.43 1.54 1.69 
1.56 1.48 1.40 1.49 
1.62 1.31 1.28 1.43 
1.53 1.55 1.27 1.48 
1.29 1.55 1.33 1.58 
1.64 1.28 1.37 1.57 
1.57 1.57 1.08 1.52 
1.47 1.71 1.76 1.53 
1.64 1.58 1.44 1.53 
1.46 1.57 1.36 1.67 
1.49 1.51 1.41 1.50 
.I0 .I4 .I4 .I2 

mean absolu~e error 
SD 



F 
MAXCOV Estimations of Means N 

N3-50-20: True P= .50, N=300, 2 SD Separation on all Indicators 0 
m 

Nuisance Covariance in Taxon and Complement Groups 

Sample Pooled Estimates Error in Pooled Estimates 
Complement Taxon Complement Taxon 

1.83 1.96 1.86 
1.89 2.04 1.86 
2.12 1.69 1.78 
1.98 2.02 1.88 
1.91 2.10 2.04 
2.12 I .  1.58 
4 3  1.89 1.89 
1.97 1.93 1.96 
1.85 1.79 1.92 
1.81 1.87 1.79 
1.80 2.09 1.99 
1.96 1.73 1.96 
2.05 2.04 2.04 
1.86 1.96 1.93 
1.86 1.87 1.96 
1.80 1.95 1.79 
2.19 1.95 1.69 
2.06 2.43 1.73 
1.95 1.77 1.72 
1.61 2 10 1.87 
1.91 2 OX 2.15 
1.66 1 91 1.56 
1.79 2.06 1.96 
2.08 1.73 2.1 1 
1.98 1.81 2.02 
1.90 1.94 1.88 
.I7 .I7 .IS 

mean absolute error 
SD 
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06'1 L8'1 LO'Z 90'Z LO' 
06'1 88'1 60'2 28'1 00'- 
06'1 LL'I 58'7 CL'I b l  ' 
19'1 I L ' I  18'1 bb'l 90' 
16'1 b6.1 88'1 88'7 PI' 
06'1 14'1 C6'1 L8'1 bZ' 
8b ' l  16'1 68'1 SO'Z 99' 
96'1 86'1 LO'Z 60.2 61' 
88'1 56'1 b1'Z CI'Z LO' 
ZO'Z 18'1 96'7 80'2 80' 
98'1 (1'1 06'1 CI'Z b l  ' 

CI' 
41' 
22' 
LO' 
81' 
PO' 
81' 
10'- 
6b' 
b l '  
81' 
CO' 
(I' 
(0' 
b l  . 
I Z' 
00' 
LO' 
bO' 
4b' 
80' 
62' 
OE' 
60' 
91' 
50' 
00' 

b l '  41' 
01' Lo' 
ZO' I I' 
hl' z0'- 
10'- z0' 
80' 80'- 
bZ' 50' 
81. 80' 
4Z' 80' 
I -  80'- 
50' 90'- 
2 '  60'- 
00'- 1 1' 
90' 11' 
41' (0'- 
Z0'- 40' 
ZZ' 62' 
ZI' LO'- 
51' b0' 
90' 15' 
10' 01'- 
1 E' (0. 
bb' 41' 
LZ' LO' 
IZ' 00'- 
40' 51' 
LO' I f '  



MAXCOV Estimations o f  Means  
D3-50.~1: T r u e  P=.50, N=300,  Separa t ion  o n  x=2.00 SD, y =  1.75 SD, z =  1.50 SD, u =  1.25 SD 

Snmple Pooled Esrimates Error in Pooled Estimates 
Complement Taxon Complement Tnxon 

X v z u X v I v X v Z U X v z U 

-.26 .O1 .I0 1.46 1.22 1 06 1.23 .11 
.05 .I9 -.I2 1.99 1.80 144 1.22 .04 

-.20 -.I2 .39 2.42 1.68 1.38 1.24 .61 
.04 -.01 -.30 1.79 1.61 1.32 1.10 .38 
.03 -.07 .01 1.64 1.75 1.47 1.21 .03 
.08 .06 .29 1.52 1.59 1.32 1.22 .I2 
.24 .08 .I2 1.59 1.49 1.53 1.34 -.OO 

-.05 .I4 .36 1.90 1.65 1.43 1.43 . I I  
.20 .07 .09 1.98 1.86 1.65 1.42 .07 

-.05 -.20 .I2 2.03 1.34 1.31 1.27 .I8 
.I5 .24 .I5 1.79 1.66 1.68 1.23 .27 
1 .39 -.05 1.69 1.91 1.39 1.22 .34 

-.I2 .I9 -.I2 1.70 1.34 1.69 1.3 1 -.04 
-.02 -.07 -.I0 2.07 1.60 1.61 1.09 -.01 

.01 .22 -.01 1.77 1.79 1.63 1.20 .06 

.16 .02 .22 2.25 1.58 1.38 1.27 .24 
- 0  .09 .44 1.94 5 1.1 1 1.60 .02 

.I0 .26 -.27 1.67 1.87 1.57 1.13 -.08 

.I0 -.I2 -.06 1.66 1.80 1.22 1.10 -.02 

.27 .22 .I0 1.98 1.82 1.51 1.21 .55 

.29 -.09 .22 1.56 1.24 1.36 1.09 -.I2 

.30 -.08 .29 1.93 1.31 1.23 1.38 .4 1 

.38 -.lo -.07 1.83 1.79 1.24 1.27 -.03 

.08 -.OO .15 1.91 1.73 1.47 1.52 -.03 

.16 .07 .01 1.68 1.66 1.34 1.07 .O 1 

.09 .05 .08 1.83 1.62 1.41 1.26 .13 

.I6 .I4 .I9 .22 .20 .I7 . I3  .I9 
mean absolute error .I6 

SD .I7 



MAXCOV Estimations of Means 
D6-50-vl: Truc P=.50, N=600, Separation on x=2.00 SD, y =  1.75 SD, z =  1.50 SD, v =  1.25 SD 

Sample Pooled Estimates Error in Pooled Estimates 
Complement Taxon Complement Taxon 

-- 

X Y Z V X Y I u x Y z U X Y Z U 

I -.lo .29 .I2 .I5 1.73 1.61 1.46 1.18 -.09 .22 .I1 .06 -.28 -.I9 -.18 -.I2 
2 .05 .45 .24 .I0 1.82 1.72 1.45 1.21 .01 .37 .I8 .09 -.I7 -.09 -.09 -.05 
3 .12 .09 .04 -.06 1.89 1.77 1.44 1.30 .I8 .I 1 .01 -.01 -.I 1 .OO .01 -.02 
4 .09 .29 .20 .08 1.94 1.26 1.28 1.20 -.05 .I9 .21 .08 -.I4 -.43 -.27 .03 
5 .41 .31 .44 .I7 1.65 1.67 1.37 1.16 .41 .35 .41 .05 - 3  -.I7 -.03 -.I8 
6 .68 .21 -.I3 -.06 2.22 1.78 1.36 1.37 .70 .I9 -.I4 -.M .I9 -.07 -.I0 .I1 
7 -.06 .06 .09 -. 13 1.81 1.83 1.58 1.11 -.02 .06 .08 -.I6 -.I8 .02 .I0 -.I7 
8 .35 -.01 .25 .37 1.64 1.65 1.47 1.35 .26 -.02 .27 .I4 -35 -.I 1 - 0  .I7 
9 .35 .07 .01 .21 2.00 1.50 1.64 1.21 .35 .I2 .05 .I9 -.05 -.31 .07 -.03 
10 .33 .06 -.02 .03 1.64 1.72 1.50 1.24 .39 .02 .I0 .08 -34 .01 -.04 -.06 
I I .I0 -.I2 .01 .06 1.37 1.66 1.50 1.33 .I6 -.OO -.08 .07 -.67 -.I8 -.04 .07 
I2 .03 .43 .05 .I7 1.20 1.24 1.27 1.39 .04 .41 .05 .I4 -.84 -.54 -.26 .05 
13 .17 .09 .I2 .I5 1.75 1.69 1.49 1.31 .I4 -.01 .I4 .09 -.24 .04 .01 -.02 
14 - 0  .20 -.09 -.06 1.73 1.41 1.25 1.17 -.I5 .07 -.I1 -.01 -.2 1 -.32 - 2  -.06 
I5 .58 .I5 .I4 -.04 1.79 1.85 1.47 1.12 .53 .I4 .I0 -.09 -.28 .02 -.I1 -.20 
16 .08 .I6 .11 -.I9 2 .  1.89 1.28 1.26 .09 .I8 .23 -.I6 .03 -.05 - 2  .02 
17 .20 .I5 .I8 .07 1.90 1.86 1.51 1.19 .31 .I9 .23 .06 -.I2 .14 -.09 .02 
18 .37 -.01 .22 .OO 1.80 1.56 1.34 1.13 .36 -.03 .25 -.07 -.24 -.I2 -. 16 -.20 
19 .42 .36 .20 .02 2.01 1.64 1.80 1.09 .42 .41 .26 .04 .03 -.I4 .27 -.I8 
20 -.04 .I0 .I7 .34 2.05 1.83 1.69 1.11 -.06 .09 .I5 .22 -.03 .03 .I6 -.I7 
2 1 .04 .05 .09 .I6 1.93 1.73 7 1.25 .I4 .03 .ll .08 -.08 -.09 .06 .01 
22 .3 1 -.OO .22 .I3 1.40 1.62 1.30 1.20 3 .03 .I4 .I8 -.54 -.I5 -.I 1 -.I3 
23 -.24 -.07 -.02 -.24 1.48 1.54 1.46 1.33 -.I4 -.I0 -.05 -.I7 -.55 -.27 .03 -.04 
24 .70 .44 .01 .40 1.61 1.63 1.63 . 1.24 .76 .41 .07 .38 -.31 -.I0 .04 .08 
25 .06 .I6 .03 . I 1  1.81 1.73 1.52 1.35 .06 .M .06 .I0 -.I7 -.a4 .I0 .I 1 
M .20 .I6 .I 1 .08 1.77 1.66 1.47 1.23 .20 .I4 .I 1 .05 -.24 -.I2 -.04 -.04 
SD .24 .I6 .I2 .I6 .24 .I6 .I4 .09 .24 5 .I3 .I3 .22 .I5 3 .I1 

rnenn nbsolute error .24 .I5 .I4 .I 1 .26 .14 .I 1 .09 F 

SD .20 .I4 .09 .08 
tu 

.20 .I3 .08 .07 + + 



APPENDTX H 

ESTIMATES OF "COMPLEMENT AND TAXON MFANS" FROM NONTAXONIC SAMPLES 

Below are pooled estimates of "complement and taxon means" (using 
abscissa intervals) over 25 samples for nontaxonic samples. 

Sample 'ij N Estimates of "Complement Means" Estimates of "Taxon Means" 
Configuration3 x SD y SD z SD v SD x SD y SD z SD v SD 

E300 .26 300 -.46 .24 -39 .21 -.43 .14 -.46 .20 .45 .21 .50 .23 .52 .22 .48 .18 ? 
EGO0 .26 600 -37 .20 -37 .18 -.45 .24 -.40 .21 .46 .16 .43 .19 .41 .16 .44 .19 m 
B300 .36 300 -.40 .19 -35 .18 -.43 .21 -.44 .22 .46 .21 .45 .21 .46 .13 .48 .21 g 
B600 .36 600 -31 .19 -.24 .17 -32  .I8 -.26 .17 .37 .I8 .39 .19 .40 .16 .45 .20 I2  
F300 .44 300 -37 .19 -.40 .21 -.38 .22 -.45 .20 .44 .17 .46 .21 .46 .21 .45 .19 ? 
F600 .44 600 -.I9 .18 -.26 .15 -.30 .18 -.26 .18 .36 .19 .43 .19 .41 .19 .37 .17 2 
0 0 0  .50 100 -.45 . I8  -39 .22 - 3 8  .20 -.41 .20 .42 .I6 .41 .19 .39 .I7 .44 .16 r 
C200 .50 200 -.41 .21 -.29 .19 -32  .20 -.34 .21 .42 .17 .47 .20 .51 .19 .50 .15 - 
C300 

< 
.50 300 -.42 .20 -32 .19 -38 .19 -.39 .16 .44 .17 .43 .16 .43 .22 .41 .13 0 

C600 .50 600 -.22 .13 -.28 .17 -.31 .19 -.29 .18 .35 .I1 .40 .19 .38 .16 .35 .18 Z n 
m 

N300 rxy = .68 ry, = .60 300 -.41 .22 -38 .18 -.34 .17 -.36 .19 .44 .21 .48 .16 .43 .24 .42 .19 
r,, = .64 r,, = .55 
r,, = .57 r,, = .54 

N600 correlations same 600 -.I9 .18 -.I8 .15 -.I6 .I4 -.21 .13 .37 .17 .35 .17 .36 .12 .33 .17 
as for N300 

D300 rxy = .65 ry, = .52 300 -.41 .19 -34 .19 - 3 9  .19 -.35 .23 .56 .20 .49 .17 .47 .19 .41 .15 
r,,=.58 r,,=.41 
rxY = .46 rzu = .37 

D600 correlarions same 600 -.38 .25 -.24 .17 -.28 .11 -.26 .18 .40 .18 .38 .17 .33 . I3  .37 .16 
as for D300 

'The letter is the authors' code for the configuration of factor loadings used to produce the desired r;,; the number part indicates sample size. 



TAXOMETRIC ANALYSES: 11 i W C O V  12 13 

APPENDIX I 

Each estimate is the estimated taxon mean minus the estimated comple- 
ment mean (given in Appenlx  G). To get the error, the true separation 
(known to us because we constructed these samples) was subtracted from 
the estimated value. Results for the Monte Carlo configurations are present- 
ed in the following order: 

N" Taxonic Configuration Expected rif 
P b  sepC Factor File Codee 

Loadingsd 

100 .50 2.0 0 A1-50-20 .50 
200 .50 2.0 0 A2-50-20 .50 
300 .50 2.0 0 A3-50-20 .50 
600 .50 2.0 0 A6-50-20 .50 
300 .25 2.0 0 A3-25-20 .43 
600 .25 2.0 0 A6-25-20 .43 
300 .10 2.0 0 A3-10-20 .26 
600 .10 2.0 0 A6-10-20 .26 
300 .50 1.5 0 A3-50-15 .36 
600 .50 1.5 0 A6-50-15 .36 
300 .50 2.0 x = .70 N3-50-20 rq = .68 rrz = .60 

y = .50 rn = .64 r,, = .55 
z = .40 rrv = .57 r, = .54 
v = .20 

600 .50 2.0 same as for N6-50-20 same as for 
N3-50-20 N3-50-20 

300 .50 x = 2.00 x = .70 D3-50-vl rv = .65 ryl = .52 
y = 1.75 y = .50 r, = .58 r, = .41 
z = 1.50 z = .40 r, = .46 rzv = .37 
u = 1.25 u = .20 

600 .50 same as for D6-50-vl same as for 
Dj-50-vl D3-50-vl 

'Sample size. Ba e rare 'Amount of separation in SD units, same for al l  four variables unless 
given otherwisb. 'same tor aU variables in taxon and in complemenr groups unless given o h -  

wise,  liename codin used by the aucbors for identification of the Monte Carlo samples. 
'same for all variables un&ss given otherwise. 



1214 P. E. MEEHL & L. J. YONCE 

MAXCOV Estimations of Separations 
A1-50-20: True P= .50, N =  100 

2 SD Separation on all Indicators 

Sample Estimates of Separation Error 
X Y z v X Y Z V 

1 1.77 1.70 1.95 1.79 -.31 -.31 -.46 -.I9 
2 1.19 1.65 2.18 1.55 -.20 -.I9 -.24 -.26 
3 1.66 1.20 1.56 1.57 - 3  -.42 -.30 -.I7 
4 1.86 1.62 1.43 1.67 -.23 -.46 -30 -.35 
5 1.47 1.79 1.75 1.79 - 3  - 0  -.25 -.20 
6 1.29 1.82 1.60 2.19 -.48 - 3  -.29 -.26 
7 1.58 1 67 1.94 1.34 -.20 -.07 -.25 -.67 
8 1.89 168 1.47 1.55 -.I5 -.35 -36 -39 
9 1.86 1 4 8  1.78 1.59 -.25 -.47 -35 -.49 

10 1.48 1.58 1.60 1.55 -.47 -31 -.40 -.I7 
11 1 72 1.69 1.71 1.67 -36 -.02 -.23 -.56 
12 2 08 1.39 1.77 1.71 -.I1 -.55 -.09 -.34 
13 1 97 1.56 1.49 1.49 -.33 -.69 -.56 -.28 
14 1.79 1.83 1.59 1.71 -.44 -.09 -.40 -.27 
15 1.60 1.32 1.44 1.75 - 7  -.33 - 4  -.38 
16 1.74 1.38 1.83 1.98 -.I3 - 5  -.23 -.44 
17 1.84 1.60 1.81 1.54 -.29 -30  -.30 -.I2 
18 1.52 1.90 1.64 1.67 -.I4 -31 -.32 -.31 
19 1.56 1.78 1.55 1.76 -.26 -.24 -.I8 -.17 
20 1.59 1.70 1.72 1.62 -.I2 - 6  -.19 -.13 
21 1.83 1.25 1.83 1.42 -.31 - 3  -.38 -.30 
22 1.61 1.56 1.80 1.82 -.23 -36 -.28 - 30 
23 1.96 1.51 1.76 1.67 - 0  -.23 -.40 - 2s 
24 1.66 1.96 1.68 1.90 -.I9 -.I4 -.I5 - 26 
25 1.69 2.03 1.47 1.73 - 3  -.29 -.53 -.35 
M 1.69 1.63 1.69 1.68 -.28 -.3 1 -31 -.31 
SD .2 1 .2 1 .18 .17 .10 .16 .I1 .13 

mean absolute error .28 .3 1 .3 1 .3 1 
SD .10 .16 . l l  .13 



TAXOMETRIC ANALYSES: 11. MAXCOV 1215 

MAXCOV Estimations of Separations 
142-50-20: True P= .50, N =200 

2 SD Separation on all Indicators 

Sample Estimates of Separation Error 
X Y z v X Y z U 

1.98 1.87 
2.07 1.79 
1.75 1.69 
1.77 1.83 
1.74 1.82 
1.79 1.82 
1.67 1.76 
2.33 1.65 
2.01 2.02 
2.03 1.69 
1.77 1.63 
1 95 2.27 
1 83 1.92 
1 8 0  1.80 
1.82 1.88 
1.73 1.95 
136  1.38 
1.92 1.89 
1.84 1.80 
2.06 1.96 
1.75 2.09 
1.77 1.86 
1.89 1.92 
1.99 1.92 
1.58 1.87 
1.85 1.84 
.18 .17 

mean absolute error 
SD 



1216 P. E. MEEHL & L. J. YONCE 

MAXCOV Estimations of Separations 
A3-50-20: True P= .50, A'= 300 

2 SD Separation o n  all Indicators 

Sample Estimates of Separation Error 
X Y z U X Y Z V 

1 1.90 1.77 1.85 1.92 .04 -.09 -.21 -.03 
1.98 1.81 
1.92 1.79 
1.84 2.03 
1.72 1.90 
2.03 1.92 
2.10 1.81 
2.05 1.97 
1.56 1.91 
1.65 2.10 
1.77 2.00 
1.90 1.58 
1.96 1.86 
1.95 1.74 
1.46 2 01 
1.72 1 86 
2.06 1 85 
2.15 2.03 
1.97 1.98 
1.94 1.77 
2.07 1.82 
1.87 1.85 
1.86 2.03 
2.11 1.73 
2.02 2.01 
1.90 1.89 
.17 .12 

mean absolute error 
SD 



TAXOMETRIC ANALYSES: 11. MAXCOV 12 17 

MAXCOV Estimauons 06 Separations 
A6-50-20: True P= 30 ,  N = 600 

2 SD Separation on all Indicators 

Sample Estimates of Separauon Error 
X v z V x V z v 

1.86 1.85 -.03 -.I3 
1.87 1.91 -.08 .04 
1.86 2.02 .01 .07 
1.84 2.00 -.58 -.07 
1.79 1.91 -.09 .03 
1.92 1.90 -.07 -.08 
2.02 1.93 -.lo -.03 
2.05 2.08 -.01 -.I4 
2.05 1.95 -.OO - . a  
1.83 1.99 -.02 .08 
1.79 1.97 .05 .01 
1.77 1.93 -.08 -.OO 
1.91 2.05 -.62 -.03 
1.86 2.02 .01 .06 
1.99 2.07 -.41 -.I1 
2.00 1.95 -.lo -.52 
1.81 1.95 -.03 -.06 
1.81 2.18 -.05 -.07 
1.88 2.03 -. 13 .OO 
1.94 1.88 -.I2 -.04 
1.95 1.98 .01 -.I4 
1.93 1.91 -.05 -.06 
2.05 1.87 -.05 -.02 
1.98 2.03 -.05 -.I2 
1.93 2.08 -. 14 .02 
1.91 1.98 -.I1 -.05 

.09 .08 .I7 . l l  

mean absolute error .12 .08 
SD .16 .10 



1218 P. E. MEEHL & L. J. YONCE 

MAXCOV Estimations of Separations 
A3-25-20: True P=.25, N=300 

2 SD Separation on all Indicators 

Sample Estimates of Separation Error 
X v Z V X v z V 

1 1.95 1.89 1.81 1.85 
2 1.72 1.87 1.98 1.84 
3 2.11 2.06 1.83 1.62 
4 2.15 2.11 1.91 1.77 
5 2.02 1.88 1.92 2.05 
6 1.94 2.04 1.87 1.76 
7 2.02 2.01 2.00 1.72 
8 1.81 1.36 1.95 1.85 
9 1.76 1.86 1.88 1.82 

10 1.74 1.82 1.72 1.78 
11 1.87 1.99 1.90 1.80 
12 1.56 1.82 1.63 2.04 
13 1.73 1.87 1.85 1.98 
14 2.04 I 70 1.96 1 7 4  
15 2.00 1 96 1.79 189 
16 1.53 176 2.12 1 95 
17 1.93 2.07 1.69 1.80 
18 1.85 1.95 1.83 1.80 
19 1.70 1.97 1.81 1.96 
20 1.72 1.90 1.98 1.71 
21 1.87 2.04 1.85 1.80 
22 1.66 1.76 1.90 1.67 
23 1.96 1.82 1.67 2.00 
24 1.79 1.63 1.79 1.82 
25 2.10 1.86 1.78 1.96 
M 1.86 1.88 1.86 1.84 
SD .17 .16 . l l  . l l  

mean absolute error 
SD 



TAXOMETRIC ANALYSES: 11. MAXCOV 

MAXCOV Estimations of Separations 
A6-25-20: True P= .25, N =600 

2 SD Separation on all Indicators 

Sample Estimates of Separation Error 
X v Z v X v z v 

1.91 2.08 
1.85 1.59 
1.77 2.04 
1.95 1.89 
1.84 2.07 
1.95 1.95 
1.76 2.07 
1.85 1.55 
2.00 2.03 
1.85 1.93 
1.82 1.97 
1.50 1.86 
1.86 1.97 
2.00 2.04 
1.85 2.04 
1.82 1.91 
1.94 1.99 
1.89 1.67 
1.71 1.43 
1.83 1.72 
1.76 1.69 
1.93 1.83 
1.94 1.82 
1.67 1.81 
1.85 1.83 
1.84 1.87 
. l l  .17 

mean absolute error 
SD 



1220 P. E MCCl IL & L. J. YONCE 

MAXCOV Estimations of Separations 
A3-10-20: True P= .lo, N = 300 

2 SD Separation on all Indicators 

Sample Estimates of Separation Error 

1.74 1.78 
1.19 1.48 
1.53 1.68 
1.70 1.63 
1.65 1.53 
1.61 1.78 
1.25 1.26 
1.50 1.67 
1.63 1.57 
1.47 1.65 
1.76 1.89 
1.81 2.01 
1.59 1.77 
1.54 1.65 
1.73 1.43 
1.36 1.67 
1.77 1.56 
1.46 1.63 
1.14 1.54 
1.47 1.15 
1.52 1.01 
1.77 1.95 
1.75 1.56 

.86 1.47 
1.58 1.79 
1.54 1.63 
.23 .19 

mean absolute error 
SD 



TAXOMETRIC ANALYSES: 11. MAXCOV 1221 

MAXCOV Estimations of Separations 
A6-10-20: True P= .lo, N=600 

2 SD Separation on aU Indicators 
- - 

Sample Estimates of Separation Error 
X v z u X v z U 

2.03 1.73 -.I9 
1.82 1.96 -. 14 
1.68 1.84 .05 
1.70 1.66 -. 16 
1.74 1.81 -.23 
1.75 1.30 -.09 
1.59 , 1.81 .05 
1.73 1.53 -.40 
1.85 1.93 -.22 
1.92 1.74 -. 16 
1.87 1.80 -.06 
1.71 2.00 -.I8 
1.97 2.02 -.I9 
1.68 1.75 -.29 
1.84 1.90 -.OO 
1.48 1.99 -.27 
1.59 1.93 -.39 
1.85 1.72 -.46 
1.75 1.51 -.08 
1.64 1.91 -35 
1.59 1.74 .OO 
1.76 2.20 -. 12 
1.80 1.71 -.41 
1.79 1.80 -.4 1 
1.72 1.70 -.34 
1.75 1.80 -.20 
.12 .18 .15 

mean absolute error .21 
SD .14 



1222 P. E. MEEHL & L. J. YONCE 

MAXCOV Estimations of Separations 
A3-50-15: True P=.50, N=300 

1.5 SD Separation on all Indicators 

Sample Estimates of Separation Error 
X v Z 21 X v Z V 

1 1.67 1.21 1.57 1.27 
2 1.53 1.60 1.78 1.47 
3 1.55 1.71 1.32 1.53 
4 1.36 130  1.27 1.22 
5 1.68 1.59 1.42 1.79 
6 1.51 1.64 1.61 1.38 
7 1.79 1.32 1.74 1.71 
8 1.56 1.44 1.27 1.24 
9 1.31 1.44 1.56 1.33 

10 1.36 1.69 1.56 1.58 
11 1.72 1.45 1.56 1.59 
12 1.51 1.45 1.75 1.58 
13 1.75 1.22 1.52 1.34 
14 1.65 1.52 173 1.27 
15 1.30 1.41 1.77 1.21 
16 1.31 1.74 1.53 1.66 
17 1.62 1.44 1.55 1.47 
18 1.64 1.30 1.47 1.32 
19 1.58 1.41 1.49 1.66 
20 1.32 1.18 1.66 1.25 
21 1.17 1.21 1.56 1.68 
22 1.63 1.59 1.25 1.48 
23 1.19 1.69 1.49 1.38 
24 1.52 1.56 1.53 1.59 
25 1.59 1.26 1.38 1.44 
M 1.51 1.46 1.53 1.46 
SD .17 .17 .15 .17 

mean absolute error 
SD 



TAXOMETRIC ANALYSES: U. MAXCOV 1223 

MAXCOV Estimations of Separations 
A6-50-15: True P= .50, N =600 

1.5 SD Separation on all Indicators 

Sample Estimates of Separauon Error 
X Y z u X Y z U 

1.53 1.33 
1.67 1.53 
1.46 1.72 
1.42 1.62 
.95 1.66 

1.16 1.40 
1.52 1.02 
1.45 1.49 
1 . 5  1.52 
1.40 1.30 
1.21 1.31 
1.55 1.56 
1.38 1.16 
1.37 1.61 
1.46 1.46 
1.58 1.39 
1.38 1.44 
1.37 1.51 
.92 1.45 

1.34 1.53 
1.47 1.28 
1.03 1.68 
1.71 1.58 
1.36 1.62 
1.27 1.71 
1 3 8  1.48 
.20 .17 

mean absoluce error 
SD 



P. E. MEEHL & L. J. YONCE 

MAXCOV Estimations o l  Separations 
N3-50-20: True P= .50, N=300 

Nuisance Covariance in Taxon and Complement Groups 
2 SD Separauon on all Indicators 

Sample Estimates of Separation Error 
X Y z v X Y z V 

1.44 1.78 -.14 
1.71 1.94 -.74 
1.65 1.65 -36 
1.95 1.81 -.11 
1.82 1.84 -.I8 
1.45 1.38 -.I2 
2.00 1.70 -.24 
1.68 1.79 -.57 
1.85 1.89 -.I1 
1.72 1.80 -.11 
1.77 1.59 -.40 
1.47 1.88 -.33 
1.75 1.90 -.21 
1.73 1.90 -.I2 
1.86 1.84 -.I4 
1.78 1.55 -.lo 
1.80 1.79 -.05 
1.68 1.74 -.I5 
1.57 1.90 -.I9 
1.84 1.60 -.06 
1.80 1.63 -.23 
1.62 1.50 -.83 
1.93 1.73 -.11 
1.74 1.97 .02 
1.84 1.70 -.27 
1.74 1.75 -.23 

.14 .15 .20 

mean absolute error .24 
SD .20 



TAXOMETRIC ANALYSES: I1 A1 AXCOV 1225 

MAXCOV Estimauons of Separat~ons 
N6-50-20: True P= .50, N=600 

Nu1sanc:e Covariance in Taxon and Complement Groups 
2 SD Separation on all Indicators 

Sample Estimates of Separation Error 
X v z U X v z u 

mean absolute error 
SD 



1226 P. E. MEEHL & L. J. YONCE 

MAXCOV Estimations of Separations 
D3-50-vl: True P= SO, N=300 

Separation on x=2.00 SD, y=  1.75 SD, z =  1.50 SD, v= 1.25 SD 

Sample Estimates of Separation Error 

1.06 1.13 
1.25 1.33 
1.50 .85 
1.33 1.40 
1.54 1.20 
1.26 .93 
1.46 1.22 
1.29 1.07 
1.57 1.33 
1.51 1.15 
1.44 1.08 
1.01 1.27 
1.50 1.43 
1.68 1.19 
1.40 1.22 
1.36 1.05 
1.02 1.17 
1.32 1.40 
1.33 1.16 
1.29 1.11 
1.45 .86 
1 . 2  1.09 
1.34 1.34 
1.48 1.37 
1.26 1.06 
136 1.18 
.16 .16 

mean absolute error 
SD 



TAXOMETRIC ANALYSES: 11. MAXCOV 1227 

MAXCOV Estimations of Separations 
D6-50.~1: True P= .50, N=600 

Separation on x=2.00 SD, y = 1.75 SD, z =  1.50 ID, v =  1.25 SD 

Sample Estimates of Separation Ercor 
z U 

1.34 1.03 
1.21 1.11 
1.40 1.35 
1.09 1.12 
.93 .99 

1.49 1.43 
1.48 1.24 
1.22 .98 
1.64 1.01 
1.52 1.21 
1.48 1.26 
1.23 1.22 
1.37 1.16 
1.34 1.23 
1.33 1.16 
1.17 1.46 
1.32 1.12 
1.12 1.12 
1.60 1.07 
1.52 .77 
1.63 1.09 
1.08 1.08 
1.48 1.57 
1.61 .85 
1.49 1.24 
1.36 1.15 
.19 .18 

mean absolute error 
SD 
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